- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Kaidi, Justin (1)
-
Martone, Mario (1)
-
Rastelli, Leonardo (1)
-
Weaver, Mitch (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract There is a well-known map from 4d $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) to 2d vertex operator algebras (VOAs). The 4d Schur index corresponds to the VOA vacuum character, and must be a solution with integral coefficients of a modular differential equation. This suggests a classification program for 4d $$ \mathcal{N} $$ N = 2 SCFTs that starts with modular differential equations and proceeds by imposing all known constraints that follow from the 4d → 2d map. This program becomes fully algorithmic once one specifies the order of the modular differential equation and the rank (complex dimension of the Coulomb branch) of the $$ \mathcal{N} $$ N = 2 theory. As a proof of concept, we apply the algorithm to the study of rank-two $$ \mathcal{N} $$ N = 2 SCFTs whose Schur indices satisfy a fourth-order untwisted modular differential equation. Scanning over a large number of putative cases, only 15 satisfy all of the constraints imposed by our algorithm, six of which correspond to known 4d SCFTs. More sophisticated constraints can be used to argue against the existence of the remaining nine cases. Altogether, this indicates that our knowledge of such rank-two SCFTs is surprisingly complete.more » « less
An official website of the United States government
