skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Webb, Kevin J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Super-resolution optical sensing is of critical importance in science and technology and has required prior information about an imaging system or obtrusive near-field probing. Additionally, coherent imaging and sensing in heavily scattering media such as biological tissue has been challenging, and practical approaches have either been restricted to measuring the field transmission of a single point source, or to where the medium is thin. We present the concept of far-subwavelength spatial sensing with relative object motion in speckle as a means to coherently sense through heavy scatter. Experimental results demonstrate the ability to distinguish nominally identical objects with nanometer-scale translation while hidden in randomly scattering media, without the need for precise or known location and with imprecise replacement. The theory and supportive illustrations presented provide the basis for super-resolution sensing and the possibility of virtually unlimited spatial resolution, including through thick, heavily scattering media with relative motion of an object in a structured field. This work provides enabling opportunities for material inspection, security, and biological sensing.

     
    more » « less
  2. A set of power measurements as a function of controlled nanopositioner movement of a planar film arrangement in a standing wave field is presented as a means to obtain the thicknesses and the dielectric constants to a precision dictated by noise in an exciting laser beam and the positioning and detector process, all of which can be refined with averaging. From a mutual information perspective, knowing the set of positions at which measurements are performed adds information. While applicable to any arrangement of planar films, the implementation considered involves thin transmissive membranes, as are employed in applications such as optomechanics. We show that measured power data as a function of object position provides sensitivity to the film refractive index and far-subwavelength thickness. Use of a cost function allows iterative retrieval of the film parameters, and a multi-resolution framework is described as a computationally efficient procedure. The approach is complementary to ellipsometry and could play an important role in routine film characterization studies for fields involving solid state material processing, as is common in the semiconductor device field.

     
    more » « less
  3. Light incident on a periodic plasmonic nanostructure is shown to exhibit a pushing or pulling pressure, depending on regulation of the surface wave on the top or bottom, respectively, thereby allowing wavelength control. 
    more » « less