Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Advanced Quantitative Precipitation Information (AQPI) is a synergistic project that combines observations and models to improve monitoring and forecasts of precipitation, streamflow, and coastal flooding in the San Francisco Bay Area. As an experimental system, AQPI leverages more than a decade of research, innovation, and implementation of a statewide, state-of-the-art network of observations, and development of the next generation of weather and coastal forecast models. AQPI was developed as a prototype in response to requests from the water management community for improved information on precipitation, riverine, and coastal conditions to inform their decision-making processes. Observation of precipitation in the complex Bay Area landscape of California’s coastal mountain ranges is known to be a challenging problem. But, with new advanced radar network techniques, AQPI is helping fill an important observational gap for this highly populated and vulnerable metropolitan area. The prototype AQPI system consists of improved weather radar data for precipitation estimation; additional surface measurements of precipitation, streamflow, and soil moisture; and a suite of integrated forecast modeling systems to improve situational awareness about current and future water conditions from sky to sea. Together these tools will help improve emergency preparedness and public response to prevent loss of life and destruction of property during extreme storms accompanied by heavy precipitation and high coastal water levels—especially high-moisture laden atmospheric rivers. The Bay Area AQPI system could potentially be replicated in other urban regions in California, the United States, and worldwide.more » « less
-
Abstract Many communities and ecosystems around the world rely on mountain snowpacks to provide valuable water resources. An important consideration for water resources planning is runoff timing, which can be strongly influenced by the physical process of water storage within and release from seasonal snowpacks. The aim of this study is to present a novel method that combines light detection and ranging with ground‐penetrating radar to nondestructively estimate the spatial distribution of bulk liquid water content in a seasonal snowpack during spring snowmelt. We develop these methods in a manner to be applicable within a short time window, making it possible to spatially observe rapid changes that occur to this property at subdaily timescales. We applied these methods at two experimental plots in Colorado, showing the high variability of liquid water content in snow. Volumetric liquid water contents ranged from near zero to 19%vol within the scale of meters. We also show rapid changes in bulk liquid water content of up to 5%vol that occur over subdaily timescales. The presented methods have an average uncertainty in bulk liquid water content of 1.5%vol, making them applicable for future studies to estimate the complex spatio‐temporal dynamics of liquid water in snow.more » « less
An official website of the United States government
