skip to main content

Search for: All records

Creators/Authors contains: "Weber, Eric S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Shoikhet, D. ; Vajiac, E. (Ed.)
    We consider the existence and structure properties of Parseval frames of kernel functions in vector valued de Branges spaces. We develop some sufficient conditions for Parseval sequences by identifying the main construction with Naimark dilation of frames. The dilation occurs by embedding the de Branges space of vector valued functions into a dilated de Branges space of vector valued functions. The embedding also maps the kernel functions associated with a frame sequence of the original space into a Riesz basis for the embedding space. We also develop some sufficient conditions for a dilated de Branges space to have the Kramer sampling property.
    Free, publicly-accessible full text available May 21, 2023
  3. The Kaczmarz algorithm is an iterative method for solving systems of linear equations. We introduce a randomized Kaczmarz algorithm for solving systems of linear equations in a distributed environment, i.e., the equations within the system are distributed over multiple nodes within a network. The modification we introduce is designed for a network with a tree structure that allows for passage of solution estimates between the nodes in the network. We demonstrate that the algorithm converges to the solution, or the solution of minimal norm, when the system is consistent. We also prove convergence rates of the randomized algorithm that depend on the spectral data of the coefficient matrix and the random control probability distribution. In addition, we demonstrate that the randomized algorithm can be used to identify anomalies in the system of equations when the measurements are perturbed by large, sparse noise.
    Free, publicly-accessible full text available March 1, 2023
  4. Abstract We develop a method for calculating the persistence landscapes of affine fractals using the parameters of the corresponding transformations. Given an iterated function system of affine transformations that satisfies a certain compatibility condition, we prove that there exists an affine transformation acting on the space of persistence landscapes, which intertwines the action of the iterated function system. This latter affine transformation is a strict contraction and its unique fixed point is the persistence landscape of the affine fractal. We present several examples of the theory as well as confirm the main results through simulations.
    Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available December 1, 2022
  6. The Kaczmarz algorithm is an iterative method for solving systems of linear equations. We introduce a modified Kaczmarz algorithm for solving systems of linear equations in a distributed environment, i.e., the equations within the system are distributed over multiple nodes within a network. The modification we introduce is designed for a network with a tree structure that allows for passage of solution estimates between the nodes in the network. We prove that the modified algorithm converges under no additional assumptions on the equations. We demonstrate that the algorithm converges to the solution, or the solution of minimal norm, when the system is consistent. We also demonstrate that in the case of an inconsistent system of equations, the modified relaxed Kaczmarz algorithm converges to a weighted least squares solution as the relaxation parameter approaches 0.
  7. Abstract Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant Borel probability measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere intersection with respect to their corresponding invariant measures.
  8. We introduce a novel methodology for anomaly detection in time-series data. The method uses persistence diagrams and bottleneck distances to identify anomalies. Specifically, we generate multiple predictors by randomly bagging the data (reference bags), then for each data point replacing the data point for a randomly chosen point in each bag (modified bags). The predictors then are the set of bottleneck distances for the reference/modified bag pairs. We prove the stability of the predictors as the number of bags increases. We apply our methodology to traffic data and measure the performance for identifying known incidents.