skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Weber, Franziska"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a convergence analysis of an unconditionally energy-stable first-order semi-discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier–Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace the bulk potential energy and it isa prioriunclear whether the reformulated system is equivalent to the Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the reformulated and original systems in the weak sense.

     
    more » « less