skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weber, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maintaining stable and precise alignment of a laser beam is crucial in many optical setups. In this work, we present a microcontroller-based rapid auto-alignment system that detects and corrects for drifts in a laser beam trajectory using a pair of two-dimensional duo-lateral position sensing detectors (PSDs) and a pair of mirror mounts with piezoelectric actuators. We develop hardware and software for interfacing with the PSDs and for controlling the motion of the piezoelectric mirror mounts. Our auto-alignment strategy—implemented as a state machine on the microcontroller by a real-time operating system kernel from FreeRTOS—is based on a simple linearized geometrical optical model. We benchmark our system using the standard case of coupling laser light efficiently into the guided mode of a single-mode fiber optic patch cable. We can recover the maximum fiber coupling efficiency in ∼10 seconds, even for a laser beam misaligned to the point of zero fiber coupling efficiency. 
    more » « less
  2. null (Ed.)
    In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime. 
    more » « less