skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weber, WJ"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. The ionoluminescence of strontium titanate (SrTiO3) under the intense electronic excitation produced by 3 MeV H, 19 MeV Si, and 19 MeV Cl ions was investigated for temperatures between 30 and 100 K. In addition to previously reported emission bands centered at 2.0 eV, 2.5 eV, and 2.8 eV, an asymmetric, narrow emission band centered at 3.15 eV was observed for the first time under ion irradiation. The 3.15 eV band appeared only under heavy ion irradiation (19 MeV Si and Cl) and at temperatures below ~70 K. The absence of the 3.15 eV emission under proton irradiation indicates that impurities and the pre-irradiation defect population likely play little or no role in the emission process, while electronic excitation density does. At the same time, the absence of fluence-dependent growth in the yield suggests that irradiation-induced defects are also unlikely to be the main cause of the emission. Upon comparing the proton induced ionoluminescence, heavy ion induced ionoluminescence, and available literature on low temperature photoluminescence of strontium titanate, a self-consistent interpretation emerges, where the 3.15 eV emission is associated with the recombination of large polarons. 
    more » « less