skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Webster, Alex J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Key Points We re‐evaluate equations proposed by Francis Hall to assess concentration‐discharge ( C ‐ Q ) relationships using newly available long‐term and high‐frequency data sets Across time steps we find that log‐log and log‐linear models perform equally well to describe C ‐ Q relationships Parametrization of storage‐discharge relationships via recession analyses provides additional insight to C ‐ Q relationships 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Temporal patterns in stream chemistry provide integrated signals describing the hydrological and ecological state of whole catchments. However, stream chemistry integrates multi-scale signals of processes occurring in both the catchment and stream. Deconvoluting these signals could identify mechanisms of solute transport and transformation and provide a basis for monitoring ecosystem change. We applied trend analysis, wavelet decomposition, multivariate autoregressive state-space modeling, and analysis of concentration–discharge relationships to assess temporal patterns in high-frequency (15 min) stream chemistry from permafrost-influenced boreal catchments in Interior Alaska at diel, storm, and seasonal time scales. We compared catchments that varied in spatial extent of permafrost to identify characteristic biogeochemical signals. Catchments with higher spatial extents of permafrost were characterized by increasing nitrate concentration through the thaw season, an abrupt increase in nitrate and fluorescent dissolved organic matter (fDOM) and declining conductivity in late summer, and flushing of nitrate and fDOM during summer rainstorms. In contrast, these patterns were absent, of lower magnitude, or reversed in catchments with lower permafrost extent. Solute dynamics revealed a positive influence of permafrost on fDOM export and the role of shallow, seasonally dynamic flowpaths in delivering solutes from high-permafrost catchments to streams. Lower spatial extent of permafrost resulted in static delivery of nitrate and limited transport of fDOM to streams. Shifts in concentration–discharge relationships and seasonal trends in stream chemistry toward less temporally dynamic patterns might therefore indicate reorganized catchment hydrology and biogeochemistry due to permafrost thaw. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Sexual and gender minorities face considerable inequities in society, including in science. In biology, course content provides opportunities to challenge harmful preconceptions about what is “natural” while avoiding the notion that anything found in nature is inherently good (the appeal-to-nature fallacy). We provide six principles for instructors to teach sex- and gender-related topics in postsecondary biology in a more inclusive and accurate manner: highlighting biological diversity early, presenting the social and historical context of science, using inclusive language, teaching the iterative process of science, presenting students with a diversity of role models, and developing a classroom culture of respect and inclusion. To illustrate these six principles, we review the many definitions of sex and demonstrate applying the principles to three example topics: sexual reproduction, sex determination or differentiation, and sexual selection. These principles provide a tangible starting place to create more scientifically accurate, engaging, and inclusive classrooms.

    more » « less
  5. null (Ed.)