- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Akers, Chris (2)
-
Wei, Annie Y (2)
-
Harrow, Aram W. (1)
-
Naik, Preksha (1)
-
Soni, Ronak M (1)
-
Thaler, Jesse (1)
-
Wei, Annie Y. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conventional holographic tensor networks can be described as toy holographic maps constructed from many small linear maps acting in a spatially local way, all connected together with “background entanglement”, i.e. links of a fixed state, often the maximally entangled state. However, these constructions fall short of modeling real holographic maps. One reason is that their “areas” are trivial, taking the same value for all states, unlike in gravity where the geometry is dynamical. Recently, new constructions have ameliorated this issue by adding degrees of freedom that “live on the links”. This makes areas non-trivial, equal to the background entanglement piece plus a new positive piece that depends on the state of the link degrees of freedom. Nevertheless, this still has the downside that there is background entanglement, and hence it only models relatively limited code subspaces in which every area has a definite minimum value. In this note, we simply point out that a version of these constructions goes one step further: they can be background independent, with no background entanglement in the holographic map. This is advantageous because it allows tensor networks to model holographic maps for larger code subspaces. In addition to pointing this out, we address some subtleties involved in making it work.more » « less
-
Akers, Chris; Soni, Ronak M; Wei, Annie Y (, SciPost Physics Core)Holographic tensor networks model AdS/CFT, but so far they have been limited by involving only systems that are very different from gravity. Unfortunately, we cannot straightforwardly discretize gravity to incorporate it, because that would break diffeomorphism invariance. In this note, we explore a resolution. In low dimensions gravity can be written as a topological gauge theory, which can be discretized without breaking gauge-invariance. However, new problems arise. Foremost, we now need a qualitatively new kind of “area operator,” which has no relation to the number of links along the cut and is instead topological. Secondly, the inclusion of matter becomes trickier. We successfully construct a tensor network both including matter and with this new type of area. Notably, while this area is still related to the entanglement in “edge mode” degrees of freedom, the edge modes are no longer bipartite entangled pairs. Instead they are highly multipartite. Along the way, we calculate the entropy of novel subalgebras in a particular topological gauge theory. We also show that the multipartite nature of the edge modes gives rise to non-commuting area operators, a property that other tensor networks do not exhibit.more » « less
-
Wei, Annie Y.; Naik, Preksha; Harrow, Aram W.; Thaler, Jesse (, Physical Review D)null (Ed.)
An official website of the United States government
