skip to main content

Search for: All records

Creators/Authors contains: "Wei, Na"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweedLemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant–microbiome symbiosis.

    more » « less
    Free, publicly-accessible full text available May 22, 2025
  2. To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  3. Abstract

    Pollinator sharing often leads to receipt of heterospecific pollen (HP) along with conspecific pollen. As a result, flowering plants can accumulate diverse communities of HP on stigmas. While variation in HP diversity is an important selective force contributing to flowering plant fitness, evolution and community assembly, our understanding of the extent and drivers of heterogeneity of HP diversity is limited.

    In this study, we examined the species compositions and abundances of ~1000 HP communities across 59 co‐flowering plant species in three serpentine seep communities in California, USA. We evaluated the variation in HP diversity (γ diversity) across plant species in each seep and asked whether the variation in HP γ diversity was caused by variation in HP diversity within stigmas (α diversity) or HP compositional variation among stigmas (β diversity) due to the replacement of HP species (turnover) or their loss (nestedness) from one stigma to another. We further evaluated the potential drivers of variation in HP α and β diversity using phylogenetic structural equation models.

    We found that variation in HP γ diversity across plant species was driven strongly by differences among species in HP α diversity and to a lesser extent by HP β diversity. HP community turnover contributed more to HP β diversity than nestedness consistently across plant species and seeps, suggesting a general pattern of HP compositional heterogeneity from stigma to stigma. The phylogenetic structural equation models further revealed that floral traits (e.g., stigma area, stigma‐anther distance, stigma exposure) and floral abundance were key in determining HP α diversity by influencing HP abundance (load size), while floral traits and abundance showed variable impact on HP β diversity (turnover and nestedness). Pollination generalism contributed relatively less to HP‐α and β diversity.

    These findings disentangle the heterogeneity in HP diversity at different levels, which is essential for understanding the process underlying patterns of HP receipt in plant communities. That floral traits drive the heterogeneity in HP diversity points to additional avenues by which HP receipt may contribute to plant evolution.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  4. Propelled by the omnipresence of versatile data capture, communication, and computing technologies, physical sensing has revolutionized the avenue for decisively interpreting the real world. However, various limitations hinder physical sensing’s effectiveness in critical scenarios such as disaster response and urban anomaly detection. Meanwhile, social sensing is contriving as a pervasive sensing paradigm leveraging observations from human participants equipped with portable devices and ubiquitous Internet connectivity to perceive the environment. Despite its virtues, social sensing also inherently suffers from a few drawbacks (e.g., inconsistent reliability and uncertain data provenance). Motivated by the complementary strengths of the two sensing modes, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that explores the collective intelligence of humans and machines to reconstruct the “state of the world,” both physically and socially. While a good number of interesting SPS applications have been studied, several critical unsolved challenges still exist in SPS. In this paper, we provide a comprehensive survey of SPS, emphasizing its definition, key enablers, state-of-the-art applications, potential research challenges, and roadmap for future work. This paper intends to bridge the knowledge gap of existing sensing-focused survey papers by thoroughly examining the various aspects of SPS crucial for building potent SPS systems.

    more » « less
  5. Abstract Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries. 
    more » « less
  6. Abstract

    This first multi‐year investigation focuses on bores over the southern North China Plain during the 2015–2019 warm seasons. Bore structure depended on location with undular bores tending to occur close to the coast and non‐undular bores to the west near elevated terrain. Bores were most likely to occur during June and July when convection is active. While bore frequency over the Southern Great Plains (SGP) of U.S. is linked to the region's nocturnal low‐level jet, the bores herein were sensitive to the synoptic regime with ∼80% occurring during 4‐to‐5‐day periods under three different synoptic regimes. The bores had shorter durations than their SGP counterparts and a far wider range in their direction of propagation. Overall, these findings find regional differences in bores' frequency, movement, and structure serving an impetus for future investigations of nocturnal mesoscale convective systems and bores over China and other locations worldwide.

    more » « less