Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neural networks are powerful tools. Applying them in computer systems—operating systems, databases, and networked systems—attracts much attention. However, neural networks are complicated black boxes that may produce unexpected results. To train networks with well-defined behaviors, we introduce ouroboros, a system that constructs verified neural networks. Verified neural networks are those that satisfy user-defined safety properties, known as specifications. Ouroboros builds verified networks by a training-verification loop that combines deep learning training and neural network verification. The system employs multiple techniques to fill the gap between today’s verification and the properties required for systems. Ouroboros also accelerates the training-verification loop by spec-aware learning. Our experiments show that ouroboros can train verified networks for five applications that we study and has a 2.8× speedup on average compared with the vanilla training-verification loop.more » « less
-
Computing landscape is evolving rapidly. Exascale computers have arrived, which can perform 10^18 mathematical operations per second. At the same time, quantum supremacy has been demonstrated, where quantum computers have outperformed these fastest supercomputers for certain problems. Meanwhile, artificial intelligence (AI) is transforming every aspect of science and engineering. A highly anticipated application of the emerging nexus of exascale computing, quantum computing and AI is computational design of new materials with desired functionalities, which has been the elusive goal of the federal materials genome initiative. The rapid change in computing landscape resulting from these developments has not been matched by pedagogical developments needed to train the next generation of materials engineering cyberworkforce. This gap in curricula across colleges and universities offers a unique opportunity to create educational tools, enabling a decentralized training of cyberworkforce.more » « less
-
We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control— using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response—and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithm’s behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches.more » « less