Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper describes an integrated, accurate, and inexpensive semiconductor laser -based optical frequency domain reflectometry (OFDR) system design. The system utilizes the fiber under test for both sensing and frequency sweep linearization functions, allowing the system to mitigate and compensate for phase errors without the need for an auxiliary interferometer, as is the case for traditional OFDR systems. Benefiting from the unique and embedded design, this system reaches the minimal OFDR system with only one optical interferometer and its corresponding optic-electric components without sacrificing accuracy. In addition, conventional design requires an external auxiliary interferometer, which may experience different noises from the main measuring interferometer, deteriorating the overall performance. Experimental results demonstrate the enhanced performance of the compact design as compared with the former methods, as well as the reduced complexity and improved cost-effectiveness.