skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weidner, Earl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Representatives of the genusAnncaliiaare known as natural parasites of dipteran and coleopteran insects, amphipod crustaceans, but also humans, primarily with immunodeficiency.Anncaliia algerae‐caused fatal myositis is considered as an emergent infectious disease in humans.A. (=Nosema, Brachiola) algerae, the best studied species of the genus, demonstrates the broadest among microsporidia range of natural and experimental hosts, but it has never been propagated inDrosophila. We present ultrastructural analysis of development ofA. algeraein visceral muscles and adipocytes ofDrosophila melanogaster2 wk after per oral experimental infection. We observed typical toAnncaliiaspp. features of ultrastructure and cell pathology including spore morphology, characteristic extensions of the plasma membrane, and presence of “ridges” and appendages of tubular material at proliferative stages.Anncaliia algeraedevelopment inD. melanogasterwas particularly similar to one ofA. algeraeandA.(Brachiola) vesicularumin humans with acute myositis. GivenD. melanogasteris currently the most established genetic model, with a fully sequenced genome and easily available transgenic forms and genomic markers, a novel host–parasite system might provide new genetic tools to investigate host–pathogen interactions ofA. algerae, as well to test antimicrosporidia drugs. 
    more » « less