skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weidner, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a systematic approach for the 3-D mapping of underwater caves. Exploration of underwater caves is very important for furthering our understanding of hydrogeology, managing efficiently water resources, and advancing our knowledge in marine archaeology. Underwater cave exploration by human divers however, is a tedious, labor intensive, extremely dangerous operation, and requires highly skilled people. As such, it is an excellent fit for robotic technology, which has never before been addressed. In addition to the underwater vision constraints, cave mapping presents extra challenges in the form of lack of natural illumination and harsh contrasts, resulting in failure for most of the state-ofthe-art visual based state estimation packages. A new approach employing a stereo camera and a video-light is presented. Our approach utilizes the intersection of the cone of the video-light with the cave boundaries: walls, floor, and ceiling, resulting in the construction of a wire frame outline of the cave. Successive frames are combined using a state of the art visual odometry algorithm while simultaneously inferring scale through the stereo reconstruction. Results from experiments at a cave, part of the Sistema Camilo, Quintana Roo, Mexico, validate our approach. The cave wall reconstruction presented provides an immersive experience in 3-D. 
    more » « less