Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Knowledge of how animals respond to weather and changes in their physical environment is increasingly important given the higher frequency of extreme weather recorded in recent years and its forecasted increase globally 1,2. Even species considered to be highly adapted to extremes of weather, as albatrosses are to strong winds 3–5, may be disadvantaged by shifts in those extremes. Tracked albatrosses were shown recently to avoid storms and the strongest associated winds 6. The drivers of this response are so far unknown, though we hypothesise that turbulent storm conditions restrict foraging success, possibly by reducing the detectability or accessibility of food, and albatrosses divert towards more profitable conditions where possible. We tested the impact of physical environment - wind speed, rainfall, water clarity, and time of day - on feeding activity and success of two species of albatrosses with contrasting foraging strategies. We tracked 33 wandering and 48 black-browed albatrosses from Bird Island (South Georgia) with GPS and immersion loggers, and 19 and 7 individuals respectively with stomach-temperature loggers to record ingestions, providing an in-depth picture of foraging behaviour. Reduced foraging profitability (probability of prey capture and overall mass) was associated with stormy conditions, specifically strong winds and heavy rain in surface-seizing wandering albatrosses, and probability of prey capture was reduced in strong winds in black-browed albatrosses. We show that even highly wind-adapted species may frequently encounter conditions that make foraging difficult, giving context to storm avoidance in albatrosses.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species—northern elephant seals (
Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)—to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.Free, publicly-accessible full text available January 1, 2025 -
Personality predicts divorce rates in humans, yet how personality traits affect divorce in wild animals remains largely unknown. In a male-skewed population of wandering albatross ( Diomedea exulans ), we showed that personality predicts divorce; shyer males exhibited higher divorce rates than bolder males but no such relationship was found in females. We propose that divorce may be caused by the intrusion of male competitors and shyer males divorce more often because of their avoidance of territorial aggression, while females have easier access to mates regardless of their personality. Thus, personality may have important implications for the dynamics of social relationships.more » « less
-
Abstract Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, that is to chance. Quantifying the contributions of heterogeneity and chance is essential to understand natural variability. Interindividual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favourable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.