Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Small-scale dark matter structures lighter than a billion solar masses are an important probe of primordial density fluctuations and dark matter microphysics. Due to their lack of starlight emission, their only guaranteed signatures are gravitational in nature. We report on results of a search for astrometric weak lensing by compact dark matter subhaloes in the Milky Way with Gaia DR3 data. Using a matched-filter analysis to look for correlated imprints of time-domain lensing on the proper motions of background stars in the Magellanic Clouds, we exclude order-unity substructure fractions in haloes with masses Ml between 107 and $$10^9 \, {\rm M}_\odot$$ and sizes of one parsec or smaller. We forecast that a similar approach based on proper accelerations across the entire sky with data from Gaia DR4 may be sensitive to substructure fractions of fl ≳ 10−3 in the much lower mass range of $$10 \, {\rm M}_\odot \lesssim M_l \lesssim 3 \times 10^3 \, {\rm M}_\odot$$. We further propose an analogous technique for stacked star–star lensing events in the regime of large impact parameters. Our first implementation is not yet sufficiently sensitive but serves as a useful diagnostic and calibration tool; future data releases should enable average stellar mass measurements using this stacking method.1more » « less
-
Axionlike dark matter whose symmetry breaking occurs after the end of inflation predicts enhanced primordial density fluctuations at small scales. This leads to dense axion minihalos (or miniclusters) forming early in the history of the Universe. Condensation of axions in the minihalos leads to the formation and subsequent growth of axion stars at the cores of these halos. If, like the QCD axion, the axionlike particle has attractive self-interactions there is a maximal mass for these stars, above which the star rapidly shrinks and converts an O(1) fraction of its mass into unbound relativistic axions. This process would leave a similar (although in principle distinct) signature in cosmological observables as a decaying dark matter fraction, and thus is strongly constrained. We place new limits on the properties of axionlike particles that are independent of their nongravitational couplings to the standard model.more » « less
-
Light dark fermions can mass mix with the standard model (SM) neutrinos. As a result, through oscillations and scattering, they can equilibrate in the early universe. Interactions of the dark fermion generically suppress such production at high temperatures but enhance it at later times. We find that for a wide range of mixing angles and interaction strengths equilibration with SM neutrinos occurs at temperatures near the dark fermion mass. For masses below an MeV, this naturally occurs after nucleosynthesis and opens the door to a variety of dark sector dynamics with observable imprints on the CMB and large scale structure, and with potential relevance to the tensions in H0 and S8.more » « less
-
A bstract Light dark sectors in thermal contact with the Standard Model can naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark photon mediator. The dynamics of the fermionic excited states are often neglected. We consider scenarios in which a nontrivial abundance of excited states is produced and their subsequent de-excitation yields interesting electromagnetic signals in direct detection experiments. We study three mechanisms of populating the excited state: a primordial excited fraction, a component up-scattered in the Sun, and a component up-scattered in the Earth. We find that the fractional abundance of primordial excited states is generically depleted to exponentially small fractions in the early universe. Nonetheless, this abundance can produce observable signals in current dark matter searches. MeV-scale dark matter with thermal cross sections and higher can be probed by down-scattering following excitation in the Sun. Up-scatters of GeV-scale dark matter in the Earth can give rise to signals in current and upcoming terrestrial experiments and X-ray observations. We comment on the possible relevance of these scenarios to the recent excess in XENON1T.more » « less