 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

00000010000
 More
 Availability

10
 Author / Contributor
 Filter by Author / Creator


Coenen, W. (1)

Rajamanickam, P. (1)

Sánchez, A. L. (1)

Weiss, A. D. (1)

Williams, F. A. (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

 Filter by Editor


null (1)

& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

null (Ed.)This paper investigates the steady axisymmetric structure of the cold boundarylayer flow surrounding fire whirls developing over localized fuel sources lying on a horizontal surface. The inviscid swirling motion found outside the boundary layer, driven by the entrainment of the buoyant turbulent plume of hot combustion products that develops above the fire, is described by an irrotational solution, obtained by combining Taylor's selfsimilar solution for the motion in the axial plane with the azimuthal motion induced by a line vortex of circulation $2 {\rm \pi}\Gamma$ . The development of the boundary layer from a prescribed radial location is determined by numerical integration for different swirl levels, measured by the value of the radialtoazimuthal velocity ratio $\sigma$ at the initial radial location. As in the case $\sigma =0$ , treated in the seminal boundarylayer analysis of Burggraf et al. ( Phys. Fluids , vol. 14, 1971, pp. 1821–1833), the pressure gradient associated with the centripetal acceleration of the inviscid flow is seen to generate a pronounced radial inflow. Specific attention is given to the terminal shape of the boundarylayer velocity near the axis, which displays a threelayered structure that is described by matched asymptotic expansions. The resulting composite expansion, dependent on the level of ambient swirl through the parameter $\sigma$ , is employed as boundary condition to describe the deflection of the boundarylayer flow near the axis to form a vertical swirl jet. Numerical solutions of the resulting nonslender collision region for different values of $\sigma$ are presented both for inviscid flow and for viscous flow with moderately large values of the controlling Reynolds number $\Gamma /\nu$ . The velocity description provided is useful in mathematical formulations of localized firewhirl flows, providing consistent boundary conditions accounting for the ambient swirl level.more » « less