skip to main content


Search for: All records

Creators/Authors contains: "Weisz, Daniel R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present novel constraints on the underlying galaxy formation physics (e.g. mass-loading factor, star formation history, and metal retention) at z ≳ 7 for the low-mass (M* ∼ 105 M⊙) Local Group ultrafaint dwarf galaxy (UFD) Eridanus ii (Eri ii). Using a hierarchical Bayesian framework, we apply a one-zone chemical evolution model to Eri ii’s CaHK-based photometric metallicity distribution function (MDF; [Fe/H]) and find that the evolution of Eri ii is well characterized by a short, exponentially declining star formation history ($\tau _\text{SFH}=0.39\pm _{0.13}^{0.18}$ Gyr), a low star formation efficiency ($\tau _\text{SFE}=27.56\pm _{12.92}^{25.14}$ Gyr), and a large mass-loading factor ($\eta =194.53\pm _{42.67}^{33.37}$). Our results are consistent with Eri ii forming the majority of its stars before the end of reionization. The large mass-loading factor implies strong outflows in the early history of Eri ii and is in good agreement with theoretical predictions for the mass scaling of galactic winds. It also results in the ejection of >90 per cent of the metals produced in Eri ii. We make predictions for the distribution of [Mg/Fe]–[Fe/H] in Eri ii as well as the prevalence of ultra metal-poor stars, both of which can be tested by future chemical abundance measurements. Spectroscopic follow-up of the highest metallicity stars in Eri ii ([Fe/H] > −2) will greatly improve model constraints. Our new framework can readily be applied to all UFDs throughout the Local Group, providing new insights into the underlying physics governing the evolution of the faintest galaxies in the reionization era.

     
    more » « less
  2. Abstract

    We present the elemental abundances and ages of 19 massive quiescent galaxies atz∼ 1.4 andz∼ 2.1 from the Keck Heavy Metal Survey. The ultradeep LRIS and MOSFIRE spectra were modeled using a full-spectrum stellar population fitting code with variable abundance patterns. The galaxies have iron abundances between [Fe/H] = −0.5 and −0.1 dex, with typical values of −0.2 [−0.3] atz∼ 1.4 [z∼ 2.1]. We also find a tentativelogσv–[Fe/H] relation atz∼ 1.4. The magnesium-to-iron ratios span [Mg/Fe] = 0.1–0.6 dex, with typical values of 0.3 [0.5] dex atz∼ 1.4 [z∼ 2.1]. The ages imply formation redshifts ofzform= 2–8. Compared to quiescent galaxies at lower redshifts, we find that [Fe/H] was ∼0.2 dex lower atz= 1.4–2.1. We find no evolution in [Mg/Fe] out toz∼ 1.4, though thez∼ 2.1 galaxies are 0.2 dex enhanced compared toz= 0–0.7. A comparison of these results to a chemical evolution model indicates that galaxies at higher redshift form at progressively earlier epochs and over shorter star formation timescales, with thez∼ 2.1 galaxies forming the bulk of their stars over 150 Myr atzform∼ 4. This evolution cannot be solely attributed to an increased number of quiescent galaxies at later times; several Heavy Metal galaxies have extreme chemical properties not found in massive galaxies atz∼ 0.0–0.7. Thus, the chemical properties of individual galaxies must evolve over time. Minor mergers also cannot fully account for this evolution as they cannot increase [Fe/H], particularly in galaxy centers. Consequently, the buildup of massive quiescent galaxies sincez∼ 2.1 may require further mechanisms, such as major mergers and/or central star formation.

     
    more » « less
  3. Abstract

    We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs;MV= −7.1 to −0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous set of stellar metallicities in UFDs, increasing the number of metallicities in these 13 galaxies by a factor of 5 and doubling the number of metallicities in all known MW UFDs. We provide the first well-populated MDFs for all galaxies in this sample, with 〈[Fe/H]〉 ranging from −3.0 to −2.0 dex, andσ[Fe/H]ranging from 0.3–0.7 dex. We find a nearly constant [Fe/H]∼ −2.6 over 3 decades in luminosity (∼102–105L), suggesting that the mass–metallicity relationship does not hold for such faint systems. We find a larger fraction (24%) of extremely metal-poor ([Fe/H]< −3) stars across our sample compared to the literature (14%), but note that uncertainties in our most metal-poor measurements make this an upper limit. We find 19% of stars in our UFD sample to be metal-rich ([Fe/H] > −2), consistent with the sum of literature spectroscopic studies. MW UFDs are known to be predominantly >13 Gyr old, meaning that all stars in our sample are truly ancient, unlike metal-poor stars in the MW, which have a range of possible ages. Our UFD metallicities are not well matched to known streams in the MW, providing further evidence that known MW substructures are not related to UFDs. We include a catalog of our stars to encourage community follow-up studies, including priority targets for ELT-era observations.

     
    more » « less
  4. Abstract

    Large-scale surveys will provide spectroscopy for ∼50 million resolved stars in the Milky Way and Local Group. However, these data will have a high degree of heterogeneity and most will be low-resolution (R< 10,000), posing challenges to measuring consistent and reliable stellar labels. Here, we introduce a framework for identifying and remedying these issues. By simultaneously fitting the full spectrum and Gaia photometry withthe Payne, we measure ∼30 abundances for eight metal-poor red giants in M15. From degraded quality Keck/HIRES spectra, we evaluate trends with resolution and signal-to-noise ratio (S/N) and find that (i) ∼20 abundances are recovered consistently within ≲0.1 dex agreement and with ≲0.05–0.15 dex systematic uncertainties from 10,000 ≲R≲ 80,000; (ii) for nine elements (C, Mg, Ca, Sc, Ti, Fe, Ni, Y, and Nd), this systematic precision and accuracy extends down toR∼ 2500; and (iii) while most elements do not exhibit strong S/N-dependent systematics, there are nonnegligible biases for four elements (C, Mg, Ca, and Dy) below S/N ∼ 10 pixel−1. We compare statistical uncertainties from Markov Chain Monte Carlo sampling to the easier-to-compute Cramér–Rao bounds and find that they agree for ∼85% of elements, indicating the latter to be a reliable and faster way to estimate uncertainties. Our analysis illustrates the great promise of low-resolution spectroscopy for stellar chemical abundance work in the low-metallicity regime, and ongoing improvements to stellar models (e.g., 3D-NLTE physics) will only further extend its viability to more stars, more elements, and higher precision and accuracy.

     
    more » « less
  5. We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies at z ∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1 using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation with σv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] and σv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of the z ∼ 0.7 quiescent galaxies are strikingly similar to those at z ∼ 0. However, at the lowest-velocity dispersions, the z ∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than their z ∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of both z ∼ 0 and z ∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited. 
    more » « less
  6. Abstract

    We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited.

     
    more » « less
  7. Abstract

    We present NIRCam and NIRISS modules for DOLPHOT, a widely used crowded-field stellar photometry package. We describe details of the modules including pixel masking, astrometric alignment, star finding, photometry, catalog creation, and artificial star tests. We tested these modules using NIRCam and NIRISS images of M92 (a Milky Way globular cluster), Draco II (an ultrafaint dwarf galaxy), and Wolf–Lundmark–Mellote (a star-forming dwarf galaxy). DOLPHOT’s photometry is highly precise, and the color–magnitude diagrams are deeper and have better definition than anticipated during original program design in 2017. The primary systematic uncertainties in DOLPHOT’s photometry arise from mismatches in the model and observed point-spread functions (PSFs) and aperture corrections, each contributing ≲0.01 mag to the photometric error budget. Version 1.2 of WebbPSF models, which include charge diffusion and interpixel capacitance effects, significantly reduced PSF-related uncertainties. We also observed minor (≲0.05 mag) chip-to-chip variations in NIRCam’s zero-points, which will be addressed by the JWST flux calibration program. Globular cluster observations are crucial for photometric calibration. Temporal variations in the photometry are generally ≲0.01 mag, although rare large misalignment events can introduce errors up to 0.08 mag. We provide recommended DOLPHOT parameters, guidelines for photometric reduction, and advice for improved observing strategies. Our Early Release Science DOLPHOT data products are available on MAST, complemented by comprehensive online documentation and tutorials for using DOLPHOT with JWST imaging data.

     
    more » « less
    Free, publicly-accessible full text available March 27, 2025
  8. Abstract

    We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation.

     
    more » « less
  9. Abstract

    We present a detailed analysis of the structure of the Local Group flocculent spiral galaxy M33, as measured using the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region (PHATTER) survey. Leveraging the multiwavelength coverage of PHATTER, we find that the oldest populations are dominated by a smooth exponential disk with two distinct spiral arms and a classical central bar—completely distinct from what is seen in broadband optical imaging, and the first-ever confirmation of a bar in M33. We estimate a bar extent of ∼1 kpc. The two spiral arms are asymmetric in orientation and strength, and likely represent the innermost impact of the recent tidal interaction responsible for M33's warp at larger scales. The flocculent multiarmed morphology for which M33 is known is only visible in the young upper main-sequence population, which closely tracks the morphology of the interstellar medium. We investigate the stability of M33's disk, findingQ∼ 1 over the majority of the disk. We fit multiple components to the old stellar density distribution and find that, when considering recent stellar kinematics, M33's bulk structure favors the inclusion of an accreted halo component, modeled as a broken power law. The best-fit halo has an outer power-law index of −3 and accurately describes observational evidence of M33's stellar halo from both resolved stellar spectroscopy in the disk and its stellar populations at large radius. Integrating this profile yields a total halo stellar mass of ∼5 × 108M, for a stellar halo mass fraction of 16%, most of which resides in the innermost 2.5 kpc.

     
    more » « less
  10. ABSTRACT

    We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$. Cluster formation is triggered when at least $10^7\, \mathrm{M}_{\odot }$ of dense, turbulent gas reaches $\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $2-3\, {\rm Gyr}$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable.

     
    more » « less