skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wells, Lance"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Immunofocusing on conserved, subdominant epitopes is critical for vaccines against highly diverse viruses such as HIV-1, influenza, and SARS-CoV-2. The eight-residue N-terminus of the HIV-1 fusion peptide (FP) is one such example of a promising yet small target. We developed new FP immunogens using three alphavirus-like particles (VLPs) and introduced additional glycans to mask shared carrier-specific epitopes. In two independent guinea pig studies, sequential immunization with heterologous carriers enhanced FP-directed antibody titers, which were further improved with glycan engineering. Separately, using diverse FP variants sharing the same N-terminal six amino acids increased neutralizing antibody titers. When combined, these two strategies led to higher FP-directed titers and, after Env trimer boosting, induced FP-directed neutralizing antibodies against multi-clade wild-type HIV-1 in nearly all animals. These findings established the importance of minimizing recurrent off-target epitopes across immunizations and support the engineered VLPs as a promising platform for peptide immunization. HighlightsNovel HIV-1 fusion peptide immunogens using glycan-engineered alphavirus-like particlesImproved FP-directed response by minimizing recurrent carrier-specific epitopes across immunizationsImproved neutralizing response by sequential immunization with diverse FP variantsFP-directed antibodies neutralizing multi-clade wildtype viruses in nearly all animals 
    more » « less
    Free, publicly-accessible full text available May 5, 2026
  2. Abstract Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63. 
    more » « less