skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Welti, Ellen A. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants—where K is the primary electrolyte—than in animals—where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above‐ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15‐element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K—via large mammal grazers or coastal aerosol deposition—likely enhance the ability of plants to adjust their above‐ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.

    more » « less
  2. Abstract

    Sodium (Na) is an essential element for all animals, but not for plants. Soil Na supplies vary geographically. Animals that primarily consume plants thus have the potential to be Na limited and plants that uptake Na may be subject to higher rates of herbivory, but their high Na content also may attract beneficial partners such as pollinators and seed dispersers.

    To test for the effects of Na biogeochemistry on herbivory, we conducted distributed Na press experiments (monthly Na application across the growing season) in four North American grasslands.

    Na addition increased soil and plant Na concentrations at all sites. Grasses in Na addition plots had significantly higher herbivore damage by leaf miners and fungal pathogens than those in control plots. Forbs with higher foliar Na concentrations had significantly more chewing insect herbivore and fungal damage.

    While no pattern was evident across all species, several forb species had higher Na concentrations in inflorescences compared to leaves, suggesting they may allocate Na to attract beneficial partners.

    The uptake of Na by plants, and animal responses, has implications for the salinification in the Anthropocene. Increased use of road salt, irrigation with saline groundwater, rising sea levels and increasing temperatures and evapotranspiration rates with climate change can all increase inputs of Na into terrestrial ecosystems.

    Our results suggest increasing terrestrial Na availability will benefit insect herbivores and plant fungal pathogens.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  3. Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis—the decreasing concentration of essential dietary minerals with increasing plant productivity—that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1–2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40–54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na—nutrients which limit grasshopper abundance—declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines—habitat loss, light and chemical pollution—ND may be widespread in remaining natural areas.

    more » « less
  4. Abstract

    Plant elemental content can vary up to 1,000‐fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant‐essential), 7 essential to animals but not plants (animal‐essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply‐side hypothesis, the plant‐essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle‐grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP‐catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant‐essential elements of forbs, in contrast, consistently varied as per the nutrient‐dilution hypothesis—there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient‐poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient‐rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases inpCO2via nutrient dilution.

    more » « less
  5. Abstract

    Anthropogenic activities are increasing terrestrial sodium availability through application of both saline irrigation water and road salt. Sodium often limits herbivore abundance, but less is known about the physiological, developmental, and behavioral means by which moderate increases in sodium availability can increase herbivore fitness. Here, we raised a grasshopper species on three no‐choice diets of wheatgrass watered with no sodium (control), a 1% (medium) sodium solution, and a 5% (high) sodium solution to examine the effects of sodium intake on grasshopper survival, morphology, and jumping performance. Grasshopper nymphs raised on a high sodium diet had lower weights and reduced survival compared to those raised on control or medium sodium diets. However, nymphs on a high sodium diet developed larger eye size standardized by body size and demonstrated increased jumping distance compared to nymphs on the control or medium sodium diets. As adults, grasshoppers on the medium sodium diet had the highest survival and grasshoppers on the high sodium diet had the least amount of cannibalism of the three treatments. Understanding the response of herbivore fitness to increasing diet sodium content is an important first step toward predicting how anthropogenic inputs of sodium into terrestrial systems will alter food webs.

    more » « less
  6. Abstract

    The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group‐specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.

    more » « less
  7. Abstract

    We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non‐drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.

    Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short‐statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.

    One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above‐ground plant biomass while increasing plant foliar percentage nitrogen.

    We sampled arthropods and nutrient availability on and nearby (“off”) 10 bison‐grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed‐feeding grasshopper abundances were consistently higher on grazing lawns while grass‐feeder and forb‐feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.

    Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.

    more » « less
  8. Abstract

    Sugar and sodium are essential nutrients to above‐ and below‐ground consumers. Unlike other properties of ecological communities such as abundance and richness, we know relatively little about nutritional geography—the sources and supply rates of nutrients, and how and why they vary across communities and ecosystems.

    Towards a remedy, we present a suite of hypotheses for how sodium and sugary exudate availability should vary for a common omnivore—the ants—and test them using a survey of 53 North American grasslands.

    We do so by running transects of salt and sugar baits and inferring the magnitude of environmental supplies as the inverse of their use as exogenous baits. We then use estimates of potential drivers of the availability of salt and sugary exudates—plant and soil nutrients, and bioclimatic variables—to test the best predictors of sodium and salt use by ant communities.

    Beyond a baseline of ant activity, salt use increased as an inverse of the amount of sodium in an ecosystem's plant tissue, but not its soils. Plant sodium varied by two orders of magnitude in grasslands across 16° latitude. This suggests that plant exudates are an important source of sodium for grassland consumers. The three drivers that best predict exogenous sugar use by ants all point to factors constraining sugar production: net above‐ground productivity, how far the community is into that year's growing season (both reflecting the rates of photosynthesis) and, intriguingly, the potassium content of plant tissue, which is likely linked to exudate production via plant turgor.

    These data suggest that ants and other consumers across a range of grasslands and climate vary significantly in the demand and supply of sugar and salt. This nutritional geography ultimately arises from gradients of climate and biogeochemistry with implications for the geography of plant–consumer interactions.

    more » « less
  9. Abstract

    Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.

    more » « less