skip to main content

Search for: All records

Creators/Authors contains: "Wen, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Weak measurement (WM) with state pre- and post-selection can amplify otherwise undetectable small signals and thus has potential in precision measurement applications. Although frequency measurements offer the hitherto highest precision due to the stable narrow atomic transitions, it remains a long-standing interest to develop new schemes to further escalate their performance. Here, we demonstrate a WM-enhanced correlation spectroscopy technique capable of narrowing the resonance linewidth down to 0.1 Hz in a room-temperature atomic vapour cell. The potential of this technique for precision measurement is demonstrated through weak magnetic-field sensing. By judiciously pre- and post-selecting frequency-modulated input and output optical states inmore »a nearly orthogonal manner, a sensitivity of 7 fT Hz^(−1/2) at a low frequency near DC is achieved using only one laser beam with 15 µW of power. Additionally, our results extend the WM framework to a non-Hermitian Hamiltonian and shed new light on metrology and bio-magnetic field sensing.« less
  2. Realization of chip‐scale nonreciprocal optics such as isolators and circulators is highly demanding for all‐optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto‐optical materials on chip, the exploration of magnetic‐free alternatives has become exceedingly imperative in integrated photonics. Here, a chip‐based, tunable all‐optical isolator at the telecommunication band is demonstrated, which is based upon bulk stimulated Brillouin scattering (SBS) in a high‐Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state‐of‐the‐art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acousticmore »wave and accompanying momentum‐conservation condition, bulk SBS also assist in realizing the nonreciprocal parity‐time symmetry in two directly coupled microresonators. The breach of time‐reversal symmetry further makes the design a versatile arena for developing many formidable ultra‐compact devices such as unidirectional single‐mode Brillouin lasers and supersensitive photonic sensors.« less
  3. Non-Hermitian optical systems with parity-time (PT) symmetry have recently revealed many intriguing prospects that outperform conservative structures. The previous works are mostly rooted in complex arrangements with controlled gain-loss interplay. Here, we demonstrate anti-PT symmetry inherent in the nonlinear optical interaction based upon forward optical four-wave mixing in a laser-cooled atomic ensemble with negligible linear gain and loss. We observe that the pair of frequency modes undergo a nontrivial anti-PT phase transition between coherent power oscillation and optical parametric amplification in presence of a large phase mismatch.
  4. Whispering-gallery-mode optical microresonators have found impactful applications in various areas due to their remarkable properties such as ultra-high quality factor (Q-factor), small mode volume, and strong evanescent field. Among these applications, controllable tuning of the optical Q-factor is vital for on-chip optical modulation and various opto-electronic devices. Here, we report an experimental demonstration with a hybrid structure formed by an ultra-high-Q microtoroid cavity and a graphene monolayer. Thanks to the strong interaction of the evanescent wave with the graphene, the structure allows the Q-factor to be controllably varied in the range of 3.9 × 105 ∼ 6.2 × 107 bymore »engineering optical absorption via changing the gap distance in between. At the same time, a resonant wavelength shift of 32 pm was also observed. Besides, the scheme enables us to approach the critical coupling with a coupling depth of 99.6%. As potential applications in integrated opto-electronic devices, we further use the system to realize a tunable optical filter with tunable bandwidth from 116.5 MHz to 2.2 GHz as well as an optical switch with a maximal extinction ratio of 31 dB and response time of 21 ms.« less