skip to main content

Search for: All records

Creators/Authors contains: "Wen, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In literature, Nocardia cholesterolicum NRRL 5767 (NC NRRL5767) is well-known for its ability to transform ~95% of added oleic acid, an abundant agricultural commodity, to value-added product of 10-hydroxystearic acid (10-HSA). A small amount of unwanted 10-ketostearic acid (10-KSA) was also produced. This microbe also transforms ~80% of added linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid (10-OH-12-OD) (an isomer of ricinoleic acid) with minor 10-oxo-12(Z)-octadecenoic acid (10-oxo-12-OD). The conversion of oleic acid to 10-HSA and then to 10-KSA (or linoleic acid to 10-OH-12-OD and then to 10-oxo-12-OD) is catalyzed by oleate hydratase and secondary alcohol dehydrogenase (2o-ADH), respectively. The objective of thismore »project was to knockout the 2o-ADH gene in NC NRRL5767 so that the sole biotransformation product from oleic acid would be 10-HSA. Here, we report construction of CRISPR/Cas9/sgRNA chimeric plasmid that specifically target 5’ coding region of the 2o-ADH gene by Golden Gate Assembly. The construct was confirmed by DNA sequencing and transformed into NC NRRL 5767 via electroporation. The transformants were selected by apramycin resistance and screened for the presence of the target insert (crRNA) by PCR. The ability of the selected transformants to transform oleic acid to 10-HSA was screened by TLC and further confirmed by GC-MS. Our results showed that two of the transformants produced only 10-HSA with no detectable 10-KSA from oleic acid suggesting successful knockout of the 2o-ADH gene. Final confirmation came from the isolation of genomic DNA from these two transformants and the wild type NC NRRL5767 (used as DNA template) and using 17 primers (locate at different positions along the 2o-ADH gene and the 5’ upstream of this gene) for PCR. To our best knowledge, this is the first report to knockout the target gene in Nocardia species by CRISPR-Cas9 technology.« less
  2. Free, publicly-accessible full text available December 1, 2022
  3. Abstract The nEXO neutrinoless double beta (0 νββ ) decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in 136 Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of 10 28 years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector.more »The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of 1.35 × 10 28 yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model.« less
    Free, publicly-accessible full text available December 3, 2022
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available December 1, 2022
  6. Free, publicly-accessible full text available May 1, 2023
  7. Abstract The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtainmore »the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.« less
  8. Free, publicly-accessible full text available April 1, 2023