Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
The increasing uncertainty of distributed energy resources promotes the risks of transient events for power systems. To capture event dynamics, Phasor Measurement Unit (PMU) data is widely utilized due to its high resolutions. Notably, Machine Learning (ML) methods can process PMU data with feature learning techniques to identify events. However, existing ML-based methods face the following challenges due to salient characteristics from both the measurement and the label sides: (1) PMU streams have a large size with redundancy and correlations across temporal, spatial, and measurement type dimensions. Nevertheless, existing work cannot effectively uncover the structural correlations to remove redundancy and learn useful features. (2) The number of event labels is limited, but most models focus on learning with labeled data, suffering risks of non-robustness to different system conditions. To overcome the above issues, we propose an approach called Kernelized Tensor Decomposition and Classification with Semi-supervision (KTDC-Se). Firstly, we show that the key is to tensorize data storage, information filtering via decomposition, and discriminative feature learning via classification. This leads to an efficient exploration of structural correlations via high-dimensional tensors. Secondly, the proposed KTDC-Se can incorporate rich unlabeled data to seek decomposed tensors invariant to varying operational conditions. Thirdly, we make KTDC-Se a joint model of decomposition and classification so that there are no biased selections of the two steps. Finally, to boost the model accuracy, we add kernels for non-linear feature learning. We demonstrate the KTDC-Se superiority over the state-of-the-art methods for event identification using PMU data.more » « lessFree, publicly-accessible full text available December 1, 2023
-
This paper describes how domain knowledge of power system operators can be integrated into reinforcement learning (RL) frameworks to effectively learn agents that control the grid's topology to prevent thermal cascading. Typical RL-based topology controllers fail to perform well due to the large search/optimization space. Here, we propose an actor-critic-based agent to address the problem's combinatorial nature and train the agent using the RL environment developed by RTE, the French TSO. To address the challenge of the large optimization space, a curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment using network physics for enhanced agent learning. Further, a parallel training approach on multiple scenarios is employed to avoid biasing the agent to a few scenarios and make it robust to the natural variability in grid operations. Without these modifications to the training procedure, the RL agent failed for most test scenarios, illustrating the importance of properly integrating domain knowledge of physical systems for real-world RL learning. The agent was tested by RTE for the 2019 learning to run the power network challenge and was awarded the 2nd place in accuracy and 1st place in speed. The developed code is open-sourced for public use. Analysis of a simple system proves the enhancement in training RL-agents using the curriculum.more » « lessFree, publicly-accessible full text available October 1, 2023
-
Free, publicly-accessible full text available November 1, 2023
-
Physical systems are extending their monitoring capacities to edge areas with low-cost, low-power sensors and advanced data mining and machine learning techniques. However, new systems often have limited data for training the model, calling for effective knowledge transfer from other relevant grids. Specifically, Domain Adaptation (DA) seeks domain-invariant features to boost the model performance in the target domain. Nonetheless, existing DA techniques face significant challenges due to the unique characteristics of physical datasets: (1) complex spatial-temporal correlations, (2) diverse data sources including node/edge measurements and labels, and (3) large-scale data sizes. In this paper, we propose a novel cross-graph DA based on two core designs of graph kernels and graph coarsening. The former design handles spatial-temporal correlations and can incorporate networked measurements and labels conveniently. The spatial structures, temporal trends, measurement similarity, and label information together determine the similarity of two graphs, guiding the DA to find domain-invariant features. Mathematically, we construct a Graph kerNel-based distribution Adaptation (GNA) with a specifically-designed graph kernel. Then, we prove the proposed kernel is positive definite and universal, which strictly guarantees the feasibility of the used DA measure. However, the computation cost of the kernel is prohibitive for large systems. In response, we propose a novel coarsening process to obtain much smaller graphs for GNA. Finally, we report the superiority of GNA in diversified systems, including power systems, mass-damper systems, and human-activity sensing systems.more » « less
-
Power system equipment presents special signatures at the incipient stage of faults. As more renewables are integrated into the systems, these signatures are harder to detect. If faults are detected at an early stage, economical losses and power outages can be avoided in modern power grids. Many researchers and power engineers have proposed a series of signature-specific methods for one type of equipment's waveform abnormality. However, conventional methods are not designed to identify multiple types of incipient faults (IFs) signatures at the same time. Therefore, we develop a general-purpose IF detection method that detects waveform abnormality stemming from multiple types of devices. To avoid the computational burden of the general-purpose IF detection method, we embed the abnormality signatures into a vector and develop a pre-training model (PTM) for machine understanding. In the PTM, signal "words," "sentences," and "dictionaries" are designed and proposed. Through the comparison with a machine learning classifier and a simple probabilistic language model, the results show a superior detection performance and reveal that the training radius is highly related to the size of abnormal waveforms.more » « less