Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Observational studies of Hiiregion–molecular cloud interactions constrain models of feedback and quantify its impact on the surrounding environment. A recent hypothesis proposes that a characteristic spectral signature in ground state hyperfine lines of hydroxyl (OH)—the OH flip—may trace gas that is dynamically interacting with an expanding Hiiregion, offering a new means of probing such interactions. We explore this hypothesis using dedicated Jansky Very Large Array observations of three Galactic Hiiregions, G049.205−0.343, G034.256+0.145, and G024.471+0.492, in 1–2 GHz continuum emission, all four 18 cm ground-state OH lines, and multiple hydrogen radio recombination lines. A Gaussian decomposition of the molecular gas data reveals complex OH emission and absorption across our targets. We detect the OH flip toward two of our sources, G049.205−0.343 and G034.256+0.145, finding agreement between key predictions of the flip hypothesis and the observed multiwavelength spectra, kinematics, and morphology. Specifically, we demonstrate a strong spatial and kinematic association between the OH flip and the ionized gas of the Hiiregions—the first time this has been demonstrated for resolved sources—and evidence from13CO(1–0) data that the expected OH component originates from the nondisturbed gas of the parent cloud. While we detect no flip in G024.471+0.492, we do find evidence of interacting molecular gas traced by OH, providing further support for OH’s ability to trace Hiiregion–molecular cloud interactions.more » « lessFree, publicly-accessible full text available December 22, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Hiiregion heavy-element abundances throughout the Galactic disk provide important constraints to theories of the formation and evolution of the Milky Way. In LTE, radio recombination line (RRL) emission and free–free continuum emission are accurate extinction-free tracers of the Hiiregion electron temperature. Since metals act as coolants in Hiiregions via the emission of collisionally excited lines, the electron temperature is a proxy for metallicity. Shaver et al. found a linear relationship between metallicity and electron temperature with little scatter. Here we use CLOUDY Hiiregion simulations to (1) investigate the accuracy of using RRLs to measure the electron temperature and (2) explore the metallicity–electron temperature relationship. We model 135 Hiiregions with different ionizing radiation fields, densities, and metallicities. We find that electron temperatures derived under the assumption of LTE are about 20% systematically higher owing to non-LTE effects, but overall LTE is a good assumption for centimeter-wavelength RRLs. Our CLOUDY simulations are consistent with the Shaver et al. metallicity–electron temperature relationship, but there is significant scatter since earlier spectral types or higher electron densities yield higher electron temperatures. Using RRLs to derive electron temperatures assuming LTE yields errors in the predicted metallicity as large as 10%. We derive correction factors for log(O/H) + 12 in each CLOUDY simulation. For lower metallicities the correction factor depends primarily on the spectral type of the ionizing star and ranges from 0.95 to 1.10, whereas for higher metallicities the correction factor depends on the density and is between 0.97 and 1.05.more » « less
An official website of the United States government

Full Text Available