skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wensink, Frank J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A combination of IR multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+(M = Fe and Co) species. 
    more » « less
    Free, publicly-accessible full text available March 27, 2025
  2. A combination of infrared multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+(M = Ru and Rh) species. 
    more » « less
    Free, publicly-accessible full text available April 17, 2025
  3. Methane and cyclopropane (c-C3H6) were reacted with Ru+ ions in a room temperature ion trap and the resulting products were identified using a combination of mass spectrometry, IR action spectroscopy, and density functional theory calculations. In the reaction with methane, no products with odd numbers of carbon atoms were located, whereas significant amounts of products with even numbers of carbon atoms were observed. We identified [Ru,2C,4H]+ as the Ru+ ion with an ethene ligand attached, and [Ru,4C,6H]+ as a Ru(η4-cis-1,3-butadiene)+ complex. The barrier toward formation of Ru(C2H4)+ + 2 H2 was calculated at the B3LYP/def2-TZVPPD level to be 0.80 eV above the energy of the ground state Ru+ (4F) + 2 CH4 reactants. In the reaction of c-C3H6 with Ru+, we identified the dehydrogenation product [Ru,3C,4H]+ as Ru(η2-propyne)+, [Ru,2C,2H]+ as Ru+ with an ethyne ligand, and [Ru,5C,5H]+ as Ru(η5-c-C5H5)+ having a cyclopentadienyl ligand. 
    more » « less