- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Werner, David (2)
-
Hankawa, Rennosuke (1)
-
Hempstead, Mark (1)
-
Higgins, Christopher P. (1)
-
Juretus, Kyle (1)
-
LeFevre, Gregory H. (1)
-
Portmann, Andrea C. (1)
-
Savidis, Ioannis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-impact, green infrastructure systems such as biofilters, particularly when amended with biochar, can help address chemical pollution conveyed via stormwater that is increasingly posing a threat to aquatic ecosystems and groundwater quality. Although removal of organic contaminants including pesticides by biochar-amended systems has been studied, the role of a biofouling layer on contaminant removal, biotransformation, and filter lifetime remains poorly understood. This study evaluated the removal of the pesticides atrazine, imidacloprid, and clothianidin in biologically active biochar-amended columns through complete exhaustion of contaminant removal capacity. The resultant data indicate that biological processes accounted for 20–36% of overall removal in the biochar-amended sand columns. In addition, a combined target and suspect screening approach using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) was employed to evaluate the potential transformation of these three pesticides and release of the transformation products (TPs). All TPs detected in the effluent remained below 2.5% of their respective parent influent concentrations for the duration of the experiment. Furthermore, at a biochar application rate of 0.5 wt%, the presence of an active biofilm prolonged the filter lifetime by 1.8–2.3 times compared to a fouled but inactive filter, where removal was presumably dominated by adsorption only. Scenario modelling estimates showed that biochar-amended biofilters could last at least 17 years before exceeding aquatic life threshold values at biochar-application rates as low as 1 wt% (5 vol%) in a representative case study. Results of this study provide novel insight on pesticide TP formation in biochar-amended biofilters and estimation of filter lifetimes.more » « less
-
Werner, David; Juretus, Kyle; Savidis, Ioannis; Hempstead, Mark (, Proceedings of the IEEE International Conference on Computer Design (ICCD))
An official website of the United States government
