skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wersebe, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ecologists and evolutionary biologists are increasingly cognizant of rapid adaptation in wild populations. Rapid adaptation to anthropogenic environmental change is critical for maintaining biodiversity and ecosystems services into the future. Anthropogenic salinization of freshwater ecosystems is quickly emerging as a primary threat, which is well documented in the northern temperate ecoregion. Specifically, many northern temperate lakes have undergone extensive salinization because of urbanization and the associated increase in impervious surfaces causing runoff, and the extensive use of road deicing salts (e.g., NaCl). It remains unclear whether increasing salinization will lead to extirpation of species from these systems. Using a “resurrection genomics” approach, we investigated whether the keystone aquatic herbivore,Daphnia pulicaria,has evolved increased salinity tolerance in a severely salinized lake located in Minnesota, USA. Whole-genome resequencing of 54Daphniaclones from the lake and hatched from resting eggs that represent a 25-y temporal contrast demonstrates that many regions of the genome containing genes related to osmoregulation are under selection in the study population. Tolerance assays of clones revealed that the most recent clones are more tolerant to salinity than older clones; this pattern is concomitant with the temporal pattern of stabilizing salinity in this lake. Together, our results demonstrate that keystone species such asDaphniacan rapidly adapt to increasing freshwater salinization. Further, our results indicate that rapid adaptation to salinity may allow lakeDaphniapopulations to persist in the face of anthropogenic salinization maintaining the food webs and ecosystem services they support despite global environmental change. 
    more » « less
  2. <ext-link href='http://Abstract'>Abstract</ext-link> Global climate change is expected to both increase average temperatures as well as temperature variability.Increased average temperatures have led to earlier breeding in many spring‐breeding organisms. However, individuals breeding earlier will also face increased temperature fluctuations, including exposure to potentially harmful cold‐temperature regimes during early developmental stages.Using a model spring‐breeding amphibian, we investigated how embryonic exposure to different cold‐temperature regimes (control, cold‐pulse, and cold‐press) affected (a) compensatory larval development and growth, (b) larval susceptibility to a common contaminant, and (c) larval susceptibility to parasites.We found: (a) no evidence of compensatory development or growth, (b) larvae exposed to the cold‐press treatment were more susceptible to NaCl at 4‐days post‐hatching but recovered by 17‐days post‐hatching, and (c) larvae exposed to both cold treatments were less susceptible to parasites.These results demonstrate that variation in cold‐temperature regimes can lead to unique direct and indirect effects on larval growth, development, and response to stressors. This underscores the importance of considering cold‐temperature variability and not just increased average temperatures when examining the impacts of climate disruption. 
    more » « less