- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Shafaat, Hannah_S (2)
-
Wertz, Ashlee_E (2)
-
Hess, Corinna_R (1)
-
Holland, Patrick_L (1)
-
Hooper, Reagan_X (1)
-
Huber, Matthias (1)
-
Ibouanga, Philippe (1)
-
Rosenkampff, Ilmari (1)
-
Rüdiger, Olaf (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Native metalloenzymes are unparalleled in their ability to perform efficient small molecule activation reactions, converting simple substrates into complex products. Most of these natural systems possess multiple metallocofactors to facilitate electron transfer or cascade catalysis. While the field of artificial metalloenzymes is growing at a rapid rate, examples of artificial enzymes that leverage two distinct cofactors remain scarce. In this work, we describe a new class of artificial enzymes containing two different metallocofactors, incorporated through bioorthogonal strategies. Nickel-substituted rubredoxin (NiRd), which is a structural and functional mimic of [NiFe] hydrogenases, is used as a scaffold. Incorporation of a synthetic bimetallic inorganic complex based on a macrocyclic biquinazoline ligand (MMBQ) was accomplished using a novel chelating thioether linker. Neither the structure of the NiRdactive site nor the MMBQwere altered upon attachment, and each site retained independent redox activity. Electrocatalysis was observed from each site, with the switchability of the system demonstrated through the use of catalytically inert metal centers. This MMBQ–NiRdplatform offers a new avenue to create multicofactor artificial metalloenzymes in a robust system that can be easily tuned both through modifications to the protein scaffold and the synthetic moiety, with applications for redox catalysis and tandem reactivity. Graphical abstractmore » « less
-
Hooper, Reagan_X; Wertz, Ashlee_E; Shafaat, Hannah_S; Holland, Patrick_L (, Chemistry – A European Journal)Abstract Biological N2reduction occurs at sulfur‐rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2through PCET. Here, we test the feasibility of using synthetic sulfur‐supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ‐η1 : η1‐diazene (HN=NH) is the microscopic reverse of the proposed N2fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two‐electron oxidation of [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2H2)] (L1=tetradentate SSSS ligand) at −78 °C as [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2‐N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+redox potential, indicating that the reverse N2protonation would be too endergonic to proceed. This system establishes the “ground rules” for designing reversible N2/N2H2interconversion through PCET, such as tuning the redox potentials of the metal sites.more » « less
An official website of the United States government
