skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "West, Alan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The electrodeposition of Ru was investigated from solutions of ruthenium(III) nitrosyl sulfate and ruthenium(III) chloride onto seed layers of epitaxial and polycrystalline Ru and epitaxial Au. Using both galvanostatic and potentiostatic deposition modes, metallic Ru was found to electrodeposit as a porous layer comprised of (0001) oriented Ru crystallites, the presence of which was discovered and confirmed by X-ray and scanning transmission and transmission electron microscope (S/TEM) analyses. This finding was independent of the Ru salt and seed layer used. Using X-ray reflectivity (XRR), the average film densityρeffof the porous electrodeposited Ru layer was measured as less than the density of bulk RuρRu,bulk(14.414 g cm−3). Increasing the magnitude of the applied current density from −100μA cm−2to −10 mA cm−2in solutions of Ru nitrosyl sulfate increased theρefffrom 7.4 g cm−3to 9.7 g cm−2while the current efficiency decreased from 9.4% to 4.3%.

     
    more » « less
  3. Co electrodeposition was performed onto single crystal Ru(0001) and polycrystalline Ru films to study the influence of such seed layers on the growth of epitaxial Co(0001). The effect of misfit strain on the electrodeposited Co(0001) films was studied using 60 and 10 nm-thick Ru(0001) seed layers, where the misfit strains of the Co layer on the two Ru(0001) seed layers are 7.9% and 9.6%, respectively. Despite a large misfit strain of 7.9%, the planar growth of Co(0001) was achieved up to a thickness of 42 nm before a transition to island growth was observed. Epitaxial Co films electrodeposited onto 10 nm Ru(0001) showed increased roughness when compared with Co electrodeposited onto the 60 nm seed layer. Co electrodeposition onto polycrystalline Ru resulted in a rough, polycrystalline film with faceted growth. Electrochemical experiments and simulations were used to study the influence of [Co2+] and solution pH on the throughput of the electrodeposition process. By increasing [Co2+] from 1 to 20 mM, the deposition rate of Co(0001) increased from 0.23 nm min−1to 0.88 nm min−1at an applied current density of −80μA cm−2.

     
    more » « less
  4. The amount of electronic waste (e-waste) globally has doubled in just five years, from approximately 20 million tons to 40 million tons of e-waste generated per year. In 2016, the global amount of e-waste reached an all-time high of 44.7 million tons. E-waste is an invaluable unconventional resource due to its high metal content, as nearly 40% of e-waste is comprised of metals. Unfortunately, the rapid growth of e-waste is alarming due to severe environmental impacts and challenges associated with complex resource recovery that has led to the use of toxic chemicals. Furthermore, there is a very unfortunate ethical issue related to the flow of e-wastes from developed countries to developing countries. At this time, e-waste is often open pit burned and toxic chemicals are used without adequate regulations to recover metals such as copper. The recovered metals are eventually exported back to the developed countries. Thus, the current global circular economy of e-waste is not sustainable in terms of environmental impact as well as creation of ethical dilemmas. Although traditional metallurgical processes can be extended to e-waste treatment technologies, that is not enough. The complexity of e-waste requires the development of a new generation of metallurgical processes that can separate and extract metals from unconventional components such as polymers and a wide range of metals. This review focuses on the science and engineering of both conventional and innovative separation and recovery technologies for e-wastes with special attention being given to the overall sustainability. Physical separation processes, including disassembly, density separation, and magnetic separation, as well as thermal treatment of the polymeric component, such as pyrolysis, are discussed for the separation of metals and non-metals from e-wastes. The subsequent metal recovery processes through pyrometallurgy, hydrometallurgy, and biometallurgy are also discussed in depth. Finally, insights on future research towards sustainable treatment and recovery of e-waste are presented including the use of supercritical CO 2 . 
    more » « less