skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Westbrook, Brent R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rovibrational spectral data for several tetra-atomic silicon carbide clusters (TASCCs) are computed in this work using a CCSD(T)-F12b/cc-pCVTZ-F12 quartic force field. Accurate theoretical spectroscopic data may facilitate the observation of TASCCs in the interstellar medium which may lead to a more complete understanding of how the smallest silicon carbide (SiC) solids are formed. Such processes are essential for understanding SiC dust grain formation. Due to SiC dust prevalence in the interstellar medium, this may also shed light on subsequent planetary formation. Rhomboidal Si2C2is shown here to have a notably intense (247 km mol−1) anharmonic vibrational frequency at 988.1 cm−1(10.1 μm) forν2, falling into one of the spectral emission features typically associated with unknown infrared bands of various astronomical regions. Notable intensities are also present for several of the computed anharmonic vibrational frequencies including the cyclic forms of C4, SiC3, Si3C, and Si4. These features in the 6–10 μm range are natural targets for infrared observation with theJames Webb Space Telescope(JWST)’s MIRI instrument. Additionally,t-Si2C2,d-Si3C, andr-SiC3each possess dipole moments of greater than 2.0 D making them interesting targets for radioastronomical searches especially sinced-SiC3is already known in astrophysical media. 
    more » « less
  2. The ethynol (HCCOH) molecule has recently been shown to be present in simulated astrochemical ices possibly linking it to molecular building blocks for interstellar complex organic molecules like amino acids. The proposed reaction mechanism suggests the simultaneous formation of both ketene and ethynol from mixed carbon monoxide/water ice in simulated interstellar conditions. Rigorous anharmonic spectral data within both the IR and microwave regions are needed for possible detection of ethynol in the interstellar medium. This study provides the first such data for this molecule from high-level quantum chemical computations where experiment is currently lacking. Ethynol has a B e f f comparable to, but distinct from acetonitrile at 9,652.1 MHz and three notable infrared features with two in the hydride stretching-regions and the C–C stretch at 2,212.8 cm −1 . The ketene isomer has already been detected in the interstellar medium, and the possible detection of ethynol made possible by this work may lead to a deeper understanding of the proposed ice formation mechanism involving both species and how this relates to the molecular origins of life. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    The challenges associated with the out-of-plane bending problem in multiply-bonded hydrocarbon molecules can be mitigated in quartic force field analyses by varying the step size in the out-of-plane coordinates. Carbon is a highly prevalent element in astronomical and terrestrial environments, but this major piece of its spectra has eluded theoretical examinations for decades. Earlier explanations for this problem focused on method and basis set issues, while this work seeks to corroborate the recent diagnosis as a numerical instability problem related to the generation of the potential energy surface. Explicit anharmonic frequencies for c-(CH)C 3 H 2 + are computed using a quartic force field and the CCSD(T)-F12b method with cc-pVDZ-F12, cc-pVTZ-F12, and aug-cc-pVTZ basis sets. The first of these is shown to offer accuracy comparable to that of the latter two with a substantial reduction in computational time. Additionally, c-(CH)C 3 H 2 + is shown to have two fundamental frequencies at the onset of the interstellar unidentified infrared bands, at 5.134 and 6.088 μm or 1947.9 and 1642.6 cm −1 , respectively. This suggests that the results in the present study should assist in the attribution of parts of these aromatic bands, as well as provide data in support of the laboratory or astronomical detection of c-(CH)C 3 H 2 + . 
    more » « less
  5. Water and hydrogen sulfide will bind with every atomic cation from the first three rows of the periodic table. While some atoms bind more tightly than others, explicitly correlated coupled cluster theory computations show that energy is required to be put into the system in order to dissociate these bonds even for noble gas atoms. The most promising systems have shallow entrance potential energy surfaces (PESs) that lie above deeper wells of a different spin. These wells are shown explicitly for H 2 OO + , H 2 SS + , and H 2 OS + where relaxed PESs of the heavy atom bond lengths indicate that quartet states will cross more deeply-bound doublet states allowing for relatively easy association but much more difficult dissociation. In astrophysical regions that are cold and diffuse, such associations could lead to the formation of novel molecules utilizing water (or H 2 S) as the building blocks of more rich subsequent chemistry. Recent work has hypothesized that oxywater (H 2 OO) may be an intermediate in the formation of molecular oxygen in comets, and this work supports such a conclusion at least from a molecular cation perspective. 
    more » « less