skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weston, Mathew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Enhancer-promoter interactions (EPIs) are fundamental to gene regulation, and understanding their recurrence across diverse biological samples is key to deciphering chromatin architecture. In this study, we systematically analyzed the recurrence of EPIs across 49 Hi-C and 95 HiChIP datasets. We found that the majority of EPIs identified in a given sample were also present in other samples, regardless of the assay type (Hi-C or HiChIP) or the enhancer annotations used. Interestingly, EPIs that appeared unique to individual samples were typically surrounded by fewer neighboring EPIs, suggesting they may not represent truly sample-specific interactions. Our findings indicate that most human EPIs have already been captured and that cells primarily reuse subsets of these shared EPIs across different cell types and conditions. This study provides new insights into the pervasive and reusable nature of EPIs in the human genome, with important implications for chromatin conformation studies. 
    more » « less
    Free, publicly-accessible full text available September 29, 2026