We present cosmological analysis of 12 nearby (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z < 0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image-differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20% increase in the detection efficiency and significant reduction in residual rms scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well-studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive with other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances, from which we measure the Hubble constant to be , which is consistent with the standard ΛCDM model values derived using other independent techniques. -
ABSTRACT JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $\mu$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $\mu$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $\mu$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $\mu$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves.
Free, publicly-accessible full text available July 27, 2025 -
We present linear polarimetry for seven hydrogen-poor superluminous supernovae (SLSNe-I) of which only one has previously published polarimetric data. The best-studied event is SN 2017gci, for which we present two epochs of spectropolarimetry at +3 d and +29 d post-peak in rest frame, accompanied by four epochs of imaging polarimetry up to +108 d. The spectropolarimetry at +3 d shows increasing polarisation degree P towards the redder wavelengths and exhibits signs of axial symmetry, but at +29 d, P ∼ 0 throughout the spectrum, implying that the photosphere of SN 2017gci evolved from a slightly aspherical configuration to a more spherical one in the first month post-peak. However, an increase of P to ∼0.5% at ∼ + 55 d accompanied by a different orientation of the axial symmetry compared to +3 d implies the presence of additional sources of polarisation at this phase. The increase in polarisation is possibly caused by interaction with circumstellar matter (CSM), as already suggested by a knee in the light curve and a possible detection of broad H α emission at the same phase. We also analysed the sample of all 16 SLSNe-I with polarimetric measurements to date. The data taken during the early spectroscopic phase show consistently low polarisation, indicating at least nearly spherical photospheres. No clear relation between the polarimetry and spectral phase was seen when the spectra resemble Type Ic SNe during the photospheric and nebular phases. The light-curve decline rate, which spans a factor of eight, also shows no clear relation with the polarisation properties. While only slow-evolving SLSNe-I have shown non-zero polarisation, the fast-evolving ones have not been observed at sufficiently late times to conclude that none of them exhibit changing P . However, the four SLSNe-I with increasing polarisation degree also have irregular light-curve declines. For up to half of them, the photometric, spectroscopic, and polarimetric properties are affected by CSM interaction. As such, CSM interaction clearly plays an important role in understanding the polarimetric evolution of SLSNe-I.more » « less
-
Abstract We present the second and final release of optical spectroscopy of Type Ia supernovae (SNe Ia) obtained during the first and second phases of the Carnegie Supernova Project (CSP-I and CSP-II). The newly released data consist of 148 spectra of 30 SNe Ia observed in the course of CSP-I and 234 spectra of 127 SNe Ia obtained during CSP-II. We also present 216 optical spectra of 46 historical SNe Ia, including 53 spectra of 30 SNe Ia observed by the Calán/Tololo Supernova Survey. We combine these observations with previously published CSP data and publicly available spectra to compile a large sample of measurements of spectroscopic parameters at maximum light, consisting of pseudo-equivalent widths and expansion velocities of selected features for 232 CSP and historical SNe Ia (including more than 1000 spectra). Finally, we review some of the strongest correlations between spectroscopic and photometric properties of SNe Ia. Specifically, we define two samples: one consisting of SNe Ia discovered by targeted searches (most of them CSP-I objects) and the other composed of SNe Ia discovered by untargeted searches, which includes most of the CSP-II objects. The analyzed correlations are similar for both samples. We find a larger incidence of SNe Ia belonging to the cool and broad-line Branch subtypes among the events discovered by targeted searches, shallow-silicon SNe Ia are present with similar frequencies in both samples, while core normal SNe Ia are more frequent in untargeted searches.
Free, publicly-accessible full text available May 1, 2025 -
Abstract We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended N
iii (λλ 4634.0,4640.6)/Ciii (λλ 4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2M ⊙yr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialR CSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ = 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hα emission flux,R CSM,out≳ 9 × 1013cm. -
ABSTRACT The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.
-
ABSTRACT SN 1993J is one of the best-studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here, we present a new analysis of the spectropolarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the q − u plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We also see strong line polarization features, including H β, He i λ5876, H α, He i λ6678, He i λ7065, and high velocity (HV) components of He i λ5876 and H α. SN 1993J is therefore the second example of a stripped-envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV H α contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely considering the flux spectra but can be probed by spectropolarimetric observations. In future studies, the new ISP corrected data can be used in conjunction with 3D radiative transfer models to better map the geometry of the ejecta of SN 1993J.more » « less
-
We observed seven epochs of spectropolarimetry in optical wavelengths for the Type IIb SN 2011hs, ranging from -3 to +40 d with respect to V-band maximum. A high degree of interstellar polarization was detected (up to ˜3 per cent), with a peak lying blueward of 4500 Å. Similar behaviours have been seen in some Type Ia supernovae (SNe), but had never been observed in a Type IIb. We find that it is most likely the result of a relative enhancement of small silicate grains in the vicinity of the SN. Significant intrinsic continuum polarization was recovered at -3 and +2 d (p = 0.55 ± 0.12 per cent and 0.75 ± 0.11 per cent, respectively). We discuss the change of the polarization angle across spectral lines and in the continuum as diagnostics for the 3D structure of the ejecta. We see a gradual rotation by about -50° in the continuum polarization angle between -2 and +18 d after V-band maximum. A similar rotation in He I λ5876, Hα and the Ca II infrared triplet seems to indicate a strong influence of the global geometry on the line polarization features. The differences in the evolution of their respective loops on the Stokes q - u plane suggest that line specific geometries are also being probed. Possible interpretations are discussed and placed in the context of literature. We find that the spectropolarimetry of SN 2011hs is most similar to that of SN 2011dh, albeit with notable differences.more » « less