skip to main content

Search for: All records

Creators/Authors contains: "Wheeler, J. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT SN 1993J is one of the best-studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here, we present a new analysis of the spectropolarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the q − u plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We alsomore »see strong line polarization features, including H β, He i λ5876, H α, He i λ6678, He i λ7065, and high velocity (HV) components of He i λ5876 and H α. SN 1993J is therefore the second example of a stripped-envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV H α contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely considering the flux spectra but can be probed by spectropolarimetric observations. In future studies, the new ISP corrected data can be used in conjunction with 3D radiative transfer models to better map the geometry of the ejecta of SN 1993J.« less
  2. We observed seven epochs of spectropolarimetry in optical wavelengths for the Type IIb SN 2011hs, ranging from -3 to +40 d with respect to V-band maximum. A high degree of interstellar polarization was detected (up to ˜3 per cent), with a peak lying blueward of 4500 Å. Similar behaviours have been seen in some Type Ia supernovae (SNe), but had never been observed in a Type IIb. We find that it is most likely the result of a relative enhancement of small silicate grains in the vicinity of the SN. Significant intrinsic continuum polarization was recovered at -3 and +2more »d (p = 0.55 ± 0.12 per cent and 0.75 ± 0.11 per cent, respectively). We discuss the change of the polarization angle across spectral lines and in the continuum as diagnostics for the 3D structure of the ejecta. We see a gradual rotation by about -50° in the continuum polarization angle between -2 and +18 d after V-band maximum. A similar rotation in He I λ5876, Hα and the Ca II infrared triplet seems to indicate a strong influence of the global geometry on the line polarization features. The differences in the evolution of their respective loops on the Stokes q - u plane suggest that line specific geometries are also being probed. Possible interpretations are discussed and placed in the context of literature. We find that the spectropolarimetry of SN 2011hs is most similar to that of SN 2011dh, albeit with notable differences.« less
  3. Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and then followed by the Carnegie Supernova Project II at its optical and near-IR wavelengths. Our analysis indicates that LSQ13abf was discovered within two days of explosion and its first ≈10 days of evolution reveal a B -band light curve with an abrupt drop in luminosity. Contemporaneously, the V -band light curve exhibits a rise towards a first peak and the r - and i -band light curves show no early peak. The early light-curve evolution of LSQ13abf is reminiscent of the post-explosion cooling phase observed in themore »Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf also resembles SN 2008D, with P Cygni He  I features that strengthen over several weeks. Spectral energy distributions are constructed from the broad-bandphotometry, a UVOIR light curve is constructed by fitting black-body (BB) functions, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and an in addition to a post-shock breakout cooling model to the first two epochs of the bolometric evolution. This combined model suggests an explosion energy of 1.27 ± 0.23 × 10 51 ergs, in addition to a relatively high ejecta mass of 5.94 ± 1.10 M ⊙ , a 56 Ni mass of 0.16 ± 0.02 M ⊙ , and a progenitor-star radius of 28.0 ± 7.5 R ⊙ . The ejecta mass suggests the origins of LSQ13abf lie with a > 25  M ⊙ zero-age-main-sequence mass progenitor and its estimated radius is three times larger compared to the result obtained from the same analysis applied to observations of SN 2008D, and nine times larger compared to SN 1999ex. Alternatively, a comparison of hydrodynamical simulations of ≳20−25 M ⊙ zero-age-main-sequence progenitors that evolve to pre-supernova envelope masses of ≲10 M ⊙ and extended (∼100 R ⊙ ) envelopes also broadly match the observations of LSQ13abf.« less
  4. A public deep and wide science enabling survey will be needed to discover these black holes and supernovae, and to cover the area large enough for cosmic infrared background to be reliably studied. This enabling survey will find a large number of other transients and enable supernova cosmology up to z 5.