Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which containsca180 species ofPetuniaand related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production.more » « less
-
Synopsis Flowers have evolved remarkable diversity in petal color, in large part due to pollinator-mediated selection. This diversity arises from specialized metabolic pathways that generate conspicuous pigments. Despite the clear link between flower color and floral pigment production, quantitative models inferring predictive relationships between pigmentation and reflectance spectra have not been reported. In this study, we analyze a dataset consisting of hundreds of natural Penstemon hybrids that exhibit variation in flower color, including blue, purple, pink, and red. For each individual hybrid, we measured anthocyanin pigment content and petal spectral reflectance. We found that floral pigment quantities are correlated with hue, chroma, and brightness as calculated from petal spectral reflectance data: hue is related to the relative amounts of delphinidin vs. pelargonidin pigmentation, whereas brightness and chroma are correlated with the total anthocyanin pigmentation. We used a partial least squares regression approach to identify predictive relationships between pigment production and petal reflectance. We find that pigment quantity data provide robust predictions of petal reflectance, confirming a pervasive assumption that differences in pigmentation should predictably influence flower color. Moreover, we find that reflectance data enables accurate inferences of pigment quantities, where the full reflectance spectra provide much more accurate inference of pigment quantities than spectral attributes (brightness, chroma, and hue). Our predictive framework provides readily interpretable model coefficients relating spectral attributes of petal reflectance to underlying pigment quantities. These relationships represent key links between genetic changes affecting anthocyanin production and the ecological functions of petal coloration.more » « less
-
Abstract Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at particular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories, but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here, we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the transition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mutations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is contingent on the evolutionary context.more » « less
-
Townsend, Jeffrey (Ed.)Abstract Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix–loop–helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.more » « less
-
Abstract Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome‐like evolution and its drivers.more » « less
An official website of the United States government
