Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available January 16, 2026
-
Abstract Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowestNeigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated usingab initiovariational Monte Carlo to calculate the degenerate first excited state of a CO molecule.more » « less
-
We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.more » « less
An official website of the United States government
