skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Whitaker, K E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.JWST/NIRCam provides rest-frame near-IR photometry of galaxies up toz = 2.5 with exquisite depth and accuracy. This affords us an unprecedented view of the evolution of the UV/optical/near-IR color distribution and its interpretation in terms of the evolving dust attenuation,AV. Methods.We used the value-added data products (photometric redshift, stellar mass, rest-frameU − VandV − Jcolors, andAV) provided by the public DAWN JWST Archive. These data products derive from fitting the spectral energy distributions obtained from multiple NIRCam imaging surveys, augmented with preexisting HST imaging data. Our sample consists of a stellar-mass-complete sample of ≈28 000M >  109 Mgalaxies in the redshift range 0.5 <  z <  2.5. Results.TheV − Jcolor distribution of star-forming galaxies evolves strongly, in particular for high-mass galaxies (M >  3 × 1010 M), which have a pronounced tail of very red galaxies reachingV − J >  2.5 atz >  1.5 that does not exist atz <  1. Such redV − Jcan only be explained by dust attenuation, with typical values forM ≈ 1011 Mgalaxies in the rangeAV ≈ 1.5 − 3.5 atz ≈ 2. This redshift evolution went largely unnoticed before. Today, however, photometric redshift estimates for the reddest (V − J >  2.5), most attenuated galaxies have markedly improved thanks to the new, precise photometry, which is in much better agreement with the 25 available spectroscopic redshifts for such galaxies. The reddest population readily stands out as the independently identified population of galaxies detected at submillimeter wavelengths. Despite the increased attenuation,U − Vcolors across the entire mass range are slightly bluer at higherz. A well-defined and tight color sequence exists at redshifts 0.5 <  z <  2.5 forM >  3 × 1010 Mquiescent galaxies, in bothU − VandV − J, but inV − Jit is bluer rather than redder compared to star-forming galaxies. In conclusion, whereas the rest-frame UV-optical color distribution evolves remarkably little fromz = 0.5 toz = 2.5, the rest-frame optical/near-IR color distribution evolves strongly, primarily due to a very substantial increase with redshift in dust attenuation for massive galaxies. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Recent discoveries of copious amounts of dust in quiescent galaxies (QGs) at high redshifts (z ≳ 1 − 2) challenge the conventional view that these objects have a negligible interstellar medium (ISM) in proportion to their stellar mass. We made use of theSIMBAhydrodynamic cosmological simulation to explore how dust and cold gas evolve in QGs and are linked to the quenching processes affecting them. We applied a novel method for tracking the changes in the ISM dust abundance across the evolutionary history of QGs identified at 0 < z ≲ 2 in both cluster and field environments. The QGs transition from a diversity of quenching pathways, both rapidly and slowly, and they exhibit a wide range of times that elapsed between the quenching event and cold gas removal (from ∼650 Myr to ∼8 Gyr). Contrary to some claims, we find that quenching modes attributed to the feedback from active galactic nuclei (AGNs) do not affect dust and cold gas within the same timescales. Remarkably, QGs may replenish their dust content in the quenched phase primarily due to internal processes and marginally by external factors such as minor mergers. Prolonged grain growth on gas-phase metals appears to be the key mechanism for dust re-formation, which is effective within ∼100 Myr after the quenching event and rapidly increases the dust-to-gas mass ratio in QGs above the standard values (δDGR ≳ 1/100). Consequently, despite heavily depleted cold gas reservoirs, roughly half of QGs maintain little evolution of their ISM dust with stellar age within the first 2 Gyr following the quenching. Overall, we predict that relatively dusty QGs (Mdust/M ≳ 10−3 − 10−4) arise from both fast and slow quenchers, and they are prevalent in quenched systems of intermediate and low stellar masses (9 < log(M/M) < 10.5). This strong prediction poses an immediate quest for observational synergy between, for example, theJames WebbSpace Telescope (JWST) and the Atacama Large Millimetre Array (ALMA). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026