skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "White, C J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D wind-fed magnetohydrodynamic (MHD) and general relativistic magnetohydrodynamic (GRMHD) simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including non-zero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf–Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β ≈ 2) with an ∼r−1 density profile independent of the strength of magnetic fields in the winds. Our simulations reach the magnetically arrested disc (MAD) state for some, but not all cases. In tilted flows, standard and normal evolution (SANE) jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behaviour: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates, 230 GHz flux, and unresolved linear polarization fractions roughly consistent with observations for several choices of electron heating fraction. Absent another source of large-scale magnetic field, winds with a higher degree of magnetization (e.g. where the magnetic pressure is 1/100 of the ram pressure in the winds) may be required to get a sufficiently large rotation measure with consistent sign.

     
    more » « less
  2. ABSTRACT Long-term observations have shown that black hole X-ray binaries exhibit strong, aperiodic variability on time-scales of a few milliseconds to seconds. The observed light curves display various characteristic features like a lognormal distribution of flux and a linear rms–flux relation, which indicate that the underlying variability process is stochastic in nature. It is also thought to be intrinsic to accretion. This variability has been modelled as inward propagating fluctuations of mass accretion rate, although the physical process driving the fluctuations remains puzzling. In this work, we analyse five exceptionally long-duration general relativistic magnetohydrodynamic (GRMHD) simulations of optically thin, geometrically thick, black hole accretion flows to look for hints of propagating fluctuations in the simulation data. We find that the accretion profiles from these simulations do show evidence for inward propagating fluctuations below the viscous frequency by featuring strong radial coherence and positive time lags when comparing smaller to larger radii, although these time lags are generally shorter than the viscous time-scale and are frequency-independent. Our simulations also support the notion that the fluctuations in $\dot{M}$ build up in a multiplicative manner, as the simulations exhibit linear rms–mass flux relations, as well as lognormal distributions of their mass fluxes. When combining the mass fluxes from the simulations with an assumed emissivity profile, we additionally find broad agreement with observed power spectra and time lags, including a recovery of the frequency dependency of the time lags. 
    more » « less
  3. ABSTRACT We present 3D general relativistic magnetohydrodynamic simulations of zero angular momentum accretion around a rapidly rotating black hole, modified by the presence of initially uniform magnetic fields. We consider several angles between the magnetic field direction and the black hole spin. In the resulting flows, the mid-plane dynamics are governed by magnetic reconnection-driven turbulence in a magnetically arrested (or a nearly arrested) state. Electromagnetic jets with outflow efficiencies ∼10–200 per cent occupy the polar regions, reaching several hundred gravitational radii before they dissipate due to the kink instability. The jet directions fluctuate in time and can be tilted by as much as ∼30○ with respect to black hole spin, but this tilt does not depend strongly on the tilt of the initial magnetic field. A jet forms even when there is no initial net vertical magnetic flux since turbulent, horizon-scale fluctuations can generate a net vertical field locally. Peak jet power is obtained for an initial magnetic field tilted by 40○–80○ with respect to the black hole spin because this maximizes the amount of magnetic flux that can reach the black hole. These simulations may be a reasonable model for low luminosity black hole accretion flows such as Sgr A* or M87. 
    more » « less