skip to main content

Search for: All records

Creators/Authors contains: "White, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a new method for consistent, joint analysis of the pre- and post-reconstruction galaxy two-point functions of the BOSS survey. The post-reconstruction correlation function is used to accurately measure the distance-redshift relation and expansion history, while the pre-reconstruction power spectrum multipoles constrain the broad-band shape and the rate-of-growth of large-scale structure. Our technique uses Lagrangian perturbation theory to self-consistently work at the level of two-point functions, i.e. directly with the measured data, without approximating the constraints with summary statistics normalized by the drag scale. Combining galaxies across the full redshift range and both hemispheres we constrain Ω mmore » = 0.303 ± 0.0082, H 0  = 69.23 ± 0.77 and σ 8  = 0.733 ± 0.047 within the context of ΛCDM. These constraints are consistent both with the Planck primary CMB anisotropy data and recent cosmic shear surveys.« less
    Free, publicly-accessible full text available February 1, 2023
  2. Abstract A number of recent, low-redshift, lensing measurements hint at a universe in which the amplitude of lensing is lower than that predicted from the ΛCDM model fit to the data of the Planck CMB mission. Here we use the auto- and cross-correlation signal of unWISE galaxies and Planck CMB lensing maps to infer cosmological parameters at low redshift. In particular, we consider three unWISE samples (denoted as "blue", "green" and "red") at median redshifts z ∼ 0.6, 1.1 and 1.5, which fully cover the Dark Energy dominated era. Our cross-correlation measurements, with combined significance S / N  ∼ 80, are used tomore »infer the amplitude of low-redshift fluctuations, σ 8 ; the fraction of matter in the Universe, Ω m ; and the combination S 8  ≡ σ 8 (Ω m /0.3) 0.5 to which these low-redshift lensing measurements are most sensitive. The combination of blue, green and red samples gives a value S m  = 0.784 ± 0.015, that is fully consistent with other low-redshift lensing measurements and in 2.4σ tension with the CMB predictions from Planck. This is noteworthy, because CMB lensing probes the same physics as previous galaxy lensing measurements, but with very different systematics, thus providing an excellent complement to previous measurements.« less
    Free, publicly-accessible full text available December 1, 2022
  3. Abstract An observational program focused on the high redshift (2more »and compare our formalism with traditional linear methods. Our Python code FishLSS — used to calculate the Fisher information of the full shape power spectrum, CMB lensing, the cross-correlation of CMB lensing with galaxies, and combinations thereof — is publicly available.« less
    Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available October 1, 2022
  5. ABSTRACT Most efforts to detect signatures of dynamical dark energy (DE) are focused on late times, z ≲ 2, where the DE component begins to dominate the cosmic energy density. Many theoretical models involving dynamical DE exhibit a ‘freezing’ equation of state however, where w → −1 at late times, with a transition to a ‘tracking’ behaviour at earlier times (with w ≫ −1 at sufficiently high redshift). In this paper, we study whether constraints on background distance indicators from large-scale structure (LSS) surveys in the post-reionization matter-dominated regime, 2 ≲ z ≲ 6, are sensitive to this behaviour, onmore »the basis that the DE component should remain detectable (despite being strongly subdominant) in this redshift range given sufficiently precise observations. Using phenomenological models inspired by parameter space studies of Horndeski (generalized scalar-tensor) theories, we show how existing CMB and LSS measurements constrain the DE equation of state in the matter-dominated era, and examine how forthcoming galaxy surveys and 21 cm intensity mapping instruments can improve constraints in this regime at the background level. We also find that the combination of existing CMB and LSS constraints with DESI will already come close to offering the best possible constraints on H0 using BAO/galaxy power spectrum measurements, and that either a spectroscopic follow-up of the LSST galaxy sample (e.g. MegaMapper or SpecTel) or a Stage 2/PUMA-like intensity mapping survey, both at z ≳ 2, would offer better constraints on the class of models considered here than a comparable cosmic variance-limited galaxy survey at z ≲ 1.5.« less
  6. Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of large-scale structure over 0.4 ≤  z  ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg -2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxy-convergence cross-spectra using models based on cosmological perturbation theory, restricting to large scales thatmore »are expected to be well described by such models. Within the context of ΛCDM, combining all 4 samples and using priors on the background cosmology from supernova and baryon acoustic oscillation measurements, we find S 8  = σ 8 (Ω m /0.3) 0.5  = 0.73 ± 0.03. This result is lower than the prediction of the ΛCDM model conditioned on the Planck data. Our data prefer a slower growth of structure at low redshift than the model predictions, though at only modest significance.« less
    Free, publicly-accessible full text available February 1, 2023
  7. Abstract Line intensity mapping (LIM) is a rapidly emerging technique for constraining cosmology and galaxy formation using multi-frequency, low angular resolution maps.Many LIM applications crucially rely on cross-correlations of two line intensity maps, or of intensity maps with galaxy surveys or galaxy/CMB lensing.We present a consistent halo model to predict all these cross-correlations and enable joint analyses, in 3D redshift-space and for 2D projected maps.We extend the conditional luminosity function formalism to the multi-line case, to consistently account for correlated scatter between multiple galaxy line luminosities.This allows us to model the scale-dependent decorrelation between two line intensity maps,a key inputmore »for foreground rejection and for approaches that estimate auto-spectra from cross-spectra.This also enables LIM cross-correlations to reveal astrophysical properties of the interstellar medium inacessible with LIM auto-spectra.We expose the different sources of luminosity scatter or “line noise” in LIM, and clarify their effects on the 1-halo and galaxy shot noise terms.In particular, we show that the effective number density of halos can in some cases exceed that of galaxies, counterintuitively.Using observational and simulation input, we implement this halo model for the Hα, [Oiii], Lyman-α, CO and [Cii] lines.We encourage observers and simulators to measure galaxy luminosity correlation coefficients for pairs of lines whenever possible.Our code is publicly available at https://github.com/EmmanuelSchaan/HaloGen/tree/LIM .In a companion paper, we use this halo model formalism and codeto highlight the degeneracies between cosmology and astrophysics in LIM, and to compare the LIM observables to galaxy detection for a number of surveys.« less
  8. Abstract Line intensity mapping (LIM) proposes to efficiently observe distant faint galaxies and map the matter density field at high redshift.Building upon the formalism in a companion paper,we first highlight the degeneracies between cosmology and astrophysics in LIM.We discuss what can be constrained from measurements of the mean intensity and redshift-space power spectra.With a sufficient spectral resolution, the large-scale redshift-space distortions of the 2-halo term can be measured, helping to break the degeneracy between bias and mean intensity.With a higher spectral resolution, measuring the small-scale redshift-space distortions disentangles the 1-halo and shot noise terms.Cross-correlations with external galaxy catalogs or lensingmore »surveys further break degeneracies.We derive requirements for experiments similar to SPHEREx, HETDEX, CDIM, COMAP and CONCERTO.We then revisit the question of the optimality of the LIM observables, compared to galaxy detection, for astrophysics and cosmology.We use a matched filter to compute the luminosity detection threshold for individual sources.We show that LIM contains information about galaxies too faint to detect, in the high-noise or high-confusion regimes.We quantify the sparsity and clustering bias of the detected sources and compare them to LIM, showing in which cases LIM is a better tracer of the matter density.We extend previous work by answering these questions as a function of Fourier scale, including for the first time the effect of cosmic variance, pixel-to-pixel correlations, luminosity-dependent clustering bias and redshift-space distortions.« less
  9. Abstract The Lyα forest provides one of the best means of mapping large-scale structure at high redshift, including our tightest constraint on the distance-redshift relation before cosmic noon. We describe how the large-scale correlations in the Lyα forest can be understood as an expansion in cumulants of the optical depth field, which itself can be related to the density field by a bias expansion. This provides a direct connection between the observable and the statistics of the matter fluctuations which can be computed in a systematic manner. We discuss the way in which complex, small-scale physics enters the predictions, themore »origin of the much-discussed velocity bias and the `renormalization' of the large-scale bias coefficients. Our calculations are within the context of perturbation theory, but we also make contact with earlier work using the peak-background split. Using the structure of the equations of motion we demonstrate, to all orders in perturbation theory, that the large-scale flux power spectrum becomes the linear spectrum times the square of a quadratic in the cosine of the angle to the line of sight. Unlike the case of galaxies, both the isotropic and anisotropic pieces receive contributions from small-scale physics.« less
  10. ABSTRACT We implement a model for the two-point statistics of biased tracers that combines dark matter dynamics from N-body simulations with an analytic Lagrangian bias expansion. Using Aemulus, a suite of N-body simulations built for emulation of cosmological observables, we emulate the cosmology dependence of these non-linear spectra from redshifts z = 0 to z = 2. We quantify the accuracy of our emulation procedure, which is sub-per cent at $k=1\, h \,{\rm Mpc}^{-1}$ for the redshifts probed by upcoming surveys and improves at higher redshifts. We demonstrate its ability to describe the statistics of complex tracer samples, including thosemore »with assembly bias and baryonic effects, reliably fitting the clustering and lensing statistics of such samples at redshift z ≃ 0.4 to scales of $k_{\rm max} \approx 0.6\, h\,\mathrm{Mpc}^{-1}$. We show that the emulator can be used for unbiased cosmological parameter inference in simulated joint clustering and galaxy–galaxy lensing analyses with data drawn from an independent N-body simulation. These results indicate that our emulator is a promising tool that can be readily applied to the analysis of current and upcoming data sets from galaxy surveys.« less