The Hubbard model is an iconic model in quantum many-body physics and has been intensely studied, especially since the discovery of high-temperature cuprate superconductors. Combining the complementary capabilities of two computational methods, we found superconductivity in both the electron- and hole-doped regimes of the two-dimensional Hubbard model with next-nearest-neighbor hopping. In the electron-doped regime, superconductivity was weaker and was accompanied by antiferromagnetic Néel correlations at low doping. The strong superconductivity on the hole-doped side coexisted with stripe order, which persisted into the overdoped region with weaker hole-density modulation. These stripe orders varied in fillings between 0.6 and 0.8. Our results suggest the applicability of the Hubbard model with next-nearest hopping for describing cuprate high–transition temperature (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tc ) superconductivity.Free, publicly-accessible full text available May 10, 2025 -
We introduce nested gausslet bases, an improvement on previous gausslet bases that can treat systems containing atoms with much larger atomic numbers. We also introduce pure Gaussian distorted gausslet bases, which allow the Hamiltonian integrals to be performed analytically, as well as hybrid bases in which the gausslets are combined with standard Gaussian-type bases. All these bases feature the diagonal approximation for the electron–electron interactions so that the Hamiltonian is completely defined by two Nb × Nb matrices, where Nb ≈ 104 is small enough to permit fast calculations at the Hartree–Fock level. In constructing these bases, we have gained new mathematical insight into the construction of one-dimensional diagonal bases. In particular, we have proved an important theorem relating four key basis set properties: completeness, orthogonality, zero-moment conditions, and diagonalization of the coordinate operator matrix. We test our basis sets on small systems with a focus on high accuracy, obtaining, for example, an accuracy of 2 × 10−5 Ha for the total Hartree–Fock energy of the neon atom in the complete basis set limit.
-
Using large-scale density-matrix renormalzation group calculations and minimally augmented spin-wave theory, we demonstrate that the phase diagram of the quantum 𝑆=1/2 𝐽1–𝐽3 ferro-antiferromagnetic model on the honeycomb lattice differs dramatically from the classical one. It hosts the double-zigzag and Ising-𝑧 phases as unexpected intermediaries between ferromagnetic and zigzag states that are also extended beyond their classical regions of stability. In broad agreement with quantum order-by-disorder arguments, these collinear phases replace the classical spiral state.more » « less
-
The Quantum Fourier Transform (QFT) is a key component of many important quantum algorithms, most famously as being the essential ingredient in Shor's algorithm for factoring products of primes. Given its remarkable capability, one would think it can introduce large entanglement to qubit systems and would be difficult to simulate classically. While early results showed QFT indeed has maximal operator entanglement, we show that this is entirely due to the bit reversal in the QFT. The core part of the QFT has Schmidt coefficients decaying exponentially quickly, and thus it can only generate a constant amount of entanglement regardless of the number of qubits. In addition, we show the entangling power of the QFT is the same as the time evolution of a Hamiltonian with exponentially decaying interactions, and thus a variant of the area law for dynamics can be used to understand the low entanglement intuitively. Using the low entanglement property of the QFT, we show that classical simulations of the QFT on a matrix product state with low bond dimension only take time linear in the number of qubits, providing a potential speedup over the classical fast Fourier transform (FFT) on many classes of functions. We demonstrate this speedup in test calculations on some simple functions. For data vectors of length 106 to 108, the speedup can be a few orders of magnitude.more » « less
-
Typical Wannier-function downfolding starts with a mean-field or density functional set of bands to construct the Wannier functions. Here we carry out a controlled approach, using DMRG-computed natural orbital bands, to downfold the three-band Hubbard model to an effective single band model. A sharp drop-off in the natural orbital occupancy at the edge of the first band provides a clear justification for a single-band model. Constructing Wannier functions from the first band, we compute all possible two-particle terms and retain those with significant magnitude. The resulting single-band model includes two-site density-assisted hopping terms with tn∼0.6t. These terms lead to a reduction of the ratio U/teff, and are important in capturing the doping-asymmetric carrier mobility, as well as in enhancing the pairing in a single-band model for the hole-doped cuprates.more » « less
-
We report results of large-scale ground-state density matrix renormalization group (DMRG) calculations on t-
-J cylinders with circumferences 6 and 8. We determine a rough phase diagram that appears to approximate the two-dimensional (2D) system. While for many properties, positive and negative values ( ) appear to correspond to electron- and hole-doped cuprate systems, respectively, the behavior of superconductivity itself shows an inconsistency between the model and the materials. The (hole-doped) region shows antiferromagnetism limited to very low doping, stripes more generally, and the familiar Fermi surface of the hole-doped cuprates. However, we find strongly suppresses superconductivity. The (electron-doped) region shows the expected circular Fermi pocket of holes around the point and a broad low-doped region of coexisting antiferromagnetism and d-wave pairing with a triplet p component at wavevector induced by the antiferromagnetism and d-wave pairing. The pairing for the electron low-doped system with is strong and unambiguous in the DMRG simulations. At larger doping another broad region with stripes in addition to weaker d-wave pairing and striped p-wave pairing appears. In a small doping region near for , we find an unconventional type of stripe involving unpaired holes located predominantly on chains spaced three lattice spacings apart. The undoped two-leg ladder regions in between mimic the short-ranged spin correlations seen in two-leg Heisenberg ladders.