Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2023
-
Abstract N2fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N2fixing cyanobacteria (
Richelia intracellularis , hereafterRichelia) form symbiosis with a few genera of diatoms. High rates of N2fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N2fixation. Here, both the N2and C fixation in wild diatom-Richelia populations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N2fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78–91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N2and C fixation, and only N2fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d−1). Several eco-physiological parameters necessary for incorporatingmore » -
Abstract Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs.