skip to main content


Search for: All records

Creators/Authors contains: "Whiteson, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Particle collisions at the energy frontier can probe the nature of invisible dark matter via production in association with recoiling visible objects. We propose a new potential production mode, in which dark matter is produced by the decay of a heavy dark Higgs boson radiated from a heavyW′ boson. In such a model, motivated by left-right symmetric theories, dark matter would not be pair produced in association with other recoiling objects due to its lack of direct coupling to quarks or gluons. We study the hadronic decay mode viaW′ →tband estimate the LHC exclusion sensitivity at 95% confidence level to be 102− 105fb forW′ boson masses between 250 and 1750 GeV. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. A<sc>bstract</sc>

    Searches for new physics in the top quark sector are of great theoretical interest, yet some powerful avenues for discovery remain unexplored. We characterize the expected statistical power of the LHC dataset to constrain the single production of heavy top partnersTdecaying to a top quark and a photon or a top quark and a gluon. We describe an effective interaction which could generate such production, though the limits apply to a range of theoretical models. We find sensitivity to cross sections in the 102− 105fb range, forTmasses between 300 and 1000 GeV, depending on decay mode.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. The interiors of neutron stars reach densities and temperatures beyond the limits of terrestrial experiments, providing vital laboratories for probing nuclear physics. While the star's interior is not directly observable, its pressure and density determine the star's macroscopic structure which affects the spectra observed in telescopes. The relationship between the observations and the internal state is complex and partially intractable, presenting difficulties for inference. Previous work has focused on the regression from stellar spectra of parameters describing the internal state. We demonstrate a calculation of the full likelihood of the internal state parameters given observations, accomplished by replacing intractable elements with machine learning models trained on samples of simulated stars. Our machine-learning-derived likelihood allows us to performmaximum a posterioriestimation of the parameters of interest, as well as full scans. We demonstrate the technique by inferring stellar mass and radius from an individual stellar spectrum, as well as equation of state parameters from a set of spectra. Our results are more precise than pure regression models, reducing the width of the parameter residuals by 11.8% in the most realistic scenario. The neural networks will be released as a tool for fast simulation of neutron star properties and observed spectra. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract In many scientific fields which rely on statistical inference, simulations are often used to map from theoretical models to experimental data, allowing scientists to test model predictions against experimental results. Experimental data is often reconstructed from indirect measurements causing the aggregate transformation from theoretical models to experimental data to be poorly-described analytically. Instead, numerical simulations are used at great computational cost. We introduce Optimal-Transport-based Unfolding and Simulation (OTUS), a fast simulator based on unsupervised machine-learning that is capable of predicting experimental data from theoretical models. Without the aid of current simulation information, OTUS trains a probabilistic autoencoder to transform directly between theoretical models and experimental data. Identifying the probabilistic autoencoder’s latent space with the space of theoretical models causes the decoder network to become a fast, predictive simulator with the potential to replace current, computationally-costly simulators. Here, we provide proof-of-principle results on two particle physics examples, Z -boson and top-quark decays, but stress that OTUS can be widely applied to other fields. 
    more » « less
  5. A comprehensive uncertainty estimation is vital for the precision program of the LHC. While experimental uncertainties are often described by stochastic processes and well-defined nuisance parameters, theoretical uncertainties lack such a description. We study uncertainty estimates for cross-section predictions based on scale variations across a large set of processes. We find patterns similar to a stochastic origin, with accurate uncertainties for processes mediated by the strong force, but a systematic underestimate for electroweak processes. We propose an improved scheme, based on the scale variation of reference processes, which reduces outliers in the mapping from leading order to next-to-leading-order in perturbation theory.

     
    more » « less
  6. Abstract Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of the superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method which relies on certain theoretical assumptions and simplifications about the uncertainties. It first infers the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and a path towards circumventing the need for theoretical assumptions to infer physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS. 
    more » « less
  7. Abstract

    Models of physics beyond the Standard Model often contain a large number of parameters. These form a high-dimensional space that is computationally intractable to fully explore. Experimental results project onto a subspace of parameters that are consistent with those observations, but mapping these constraints to the underlying parameters is also typically intractable. Instead, physicists often resort to scanning small subsets of the full parameter space and testing for experimental consistency. We propose an alternative approach that uses generative models to significantly improve the computational efficiency of sampling high-dimensional parameter spaces. To demonstrate this, we sample the constrained and phenomenological Minimal Supersymmetric Standard Models subject to the requirement that the sampled points are consistent with the measured Higgs boson mass. Our method achieves orders of magnitude improvements in sampling efficiency compared to a brute force search.

     
    more » « less
  8. A bstract Distinguishing between prompt muons produced in heavy boson decay and muons produced in association with heavy-flavor jet production is an important task in analysis of collider physics data. We explore whether there is information available in calorimeter deposits that is not captured by the standard approach of isolation cones. We find that convolutional networks and particle-flow networks accessing the calorimeter cells surpass the performance of isolation cones, suggesting that the radial energy distribution and the angular structure of the calorimeter deposits surrounding the muon contain unused discrimination power. We assemble a small set of high-level observables which summarize the calorimeter information and close the performance gap with networks which analyze the calorimeter cells directly. These observables are theoretically well-defined and can be studied with collider data. 
    more » « less