skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Whitham, Thomas G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ahmed, Ferdous (Ed.)
    We addressed the hypothesis that intraspecific genetic variation in plant traits from different sites along a distance/elevation gradient would influence the communities they support when grown at a new site. Answers to this hypothesis are important when considering the community consequences of assisted migration under climate change; i.e., if you build it will they come?. We surveyed arthropod communities occurring on the foundation riparian tree species Populus angustifolia along a distance/elevation gradient and in a common garden where trees from along the gradient were planted 20–22 years earlier. Three major patterns were found: 1) In the wild, arthropod community composition changed significantly. Trees at the lower elevation site supported up to 58% greater arthropod abundance and 26% greater species richness than more distant, high elevation trees. 2) Trees grown in a common garden sourced from the same locations along the gradient, supported arthropod communities more similar to their corresponding wild trees, but the similarity declined with transfer distance and elevation. 3) Of five functional traits examined, leaf area, a trait under genetic control that decreases at higher elevations, is correlated with differences in arthropod species richness and abundance. Our results suggest that genetic differences in functional traits are stronger drivers of arthropod community composition than phenotypic plasticity of plant traits due to environmental factors. We also show that variation in leaf area is maintained and has similar effects at the community level while controlling for environment. These results demonstrate how genetically based traits vary across natural gradients and have community-level effects that are maintained, in part, when they are used in assisted migration. Furthermore, optimal transfer distances for plants suffering from climate change may not be the same as optimal transfer distances for their dependent communities. 
    more » « less
  2. Despite an increased focus on multiscale relationships and interdisciplinary integration, few macroecological studies consider the contribution of genetic-based processes to landscape-scale patterns. We test the hypothesis that tree genetics, climate, and geography jointly drive continental-scale patterns of community structure, using genome-wide SNP data from a broadly distributed foundation tree species (Populus fremontii S. Watson) and two dependent communities (leaf-modifying arthropods and fungal endophytes) spanning southwestern North America. Four key findings emerged: (1) Tree genetic structure was a significant predictor for both communities; however, the strength of influence was both scale- and community-dependent. (2) Tree genetics was the primary driver for endophytes, explaining 17% of variation in continental-scale community structure, whereas (3) climate was the strongest predictor of arthropod structure (24%). (4) Power to detect tree genotype—community phenotype associations changed with scale of genetic organization, increasing from individuals to populations to ecotypes, emphasizing the need to consider nonstationarity (i.e., changes in the effects of factors on ecological processes across scales) when inferring macrosystem properties. Our findings highlight the role of foundation tree species as drivers of macroscale community structure and provide macrosystems ecology with a theoretical framework for linking fine- and intermediate-scale genetic processes to landscape-scale patterns. Management of the genetic diversity harbored within foundation species is a critical consideration for conserving and sustaining regional biodiversity. 
    more » « less
  3. null (Ed.)
    Although genetic diversity within stands of trees is known to have community-level consequences, whether such effects are present at an even finer genetic scale is unknown. We examined the hypothesis that genetic variability (heterozygosity) within an individual plant would affect its dependent community, which adds a new dimension to the importance of genetic diversity. Our study contrasted foliar arthropod community diversity and microsatellite marker-derived measures of genetic diversity of cottonwood (Populus fremontii) trees that had been felled by beavers (Castor canadensis) and were resprouting, relative to adjacent standing, unfelled trees. Three patterns emerged: 1. Productivity (specific leaf area), phytochemical defenses (salicortin), and arthropod community richness, abundance, and diversity were positively correlated with the heterozygosity of individual felled trees, but not with that of unfelled trees; 2. These relationships were not explained by population substructure, genetic relatedness of the trees, or hybridization; 3. The underlying mechanism appears to be that beaver herbivory stimulates increased productivity (i.e., 2× increase from the most homozygous to the most heterozygous tree) that is the greatest in more heterozygous trees. Salicortin defenses in twigs were also expressed at higher concentrations in more heterozygous trees (i.e., 3× increase from the most homozygous to the most heterozygous tree), which suggests that this compound may dissuade further herbivory by beavers, as has been found for other mammalian herbivores. We suggest that high stress to trees as a consequence of felling reveals a heterozygosity–productivity linkage, which in turn is attractive to arthropods. Although experiments are required to demonstrate causality, these results link the genetic diversity of individual trees to community diversity, supporting the hypothesis that interactions among foundation species (beavers and trees) have community-level effects, and underscores the importance of genetic diversity for biodiversity, conservation, and restoration. 
    more » « less
  4. Meireles, Jose Eduardo (Ed.)