Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A key challenge in bioelectronics is to establish and improve the interface between electronic devices and living tissues, enabling a direct assessment of biological systems. Sensors integrated with plant tissue can provide valuable information about the plant itself as well as the surrounding environment, including air and soil quality. An obstacle in developing interfaces to plant tissue is mitigating the formation of fibrotic tissues, which can hinder continuous and accurate sensor operation over extended timeframes. Electronic systems that utilize suitable biocompatible materials alongside appropriate fabrication techniques to establish plant-electronic interfaces could provide for enhanced environmental understanding and ecosystem management capabilities. To meet these demands, this study introduces an approach for integrating printed electronic materials with biocompatible cryogels, resulting in stable implantable hydrogel-based bioelectronic devices capable of long-term operation within plant tissue. These inkjet-printed cryogels can be customized to provide various electronic functionalities, including electrodes and organic electrochemical transistors (OECTs), that exhibit high electrical conductivity for embedded conducting polymer traces (up to 350 S/cm), transconductance for OECTs in the mS range, a capacitance of up to 4.2 mF g−1in suitable structures, high stretchability (up to 330% strain), and self-healing properties. The biocompatible functionalized cryogel-based electrodes and transistors were successfully implanted in plant tissue, and ionic activity in tomato plant stems was collected for over two months with minimal scar tissue formation, making these cryogel-based printed electronic devices excellent candidates for continuous, in-situ monitoring of plant and environmental status and health.more » « less
-
Abstract The dissemination of sensors is key to realizing a sustainable, ‘intelligent’ world, where everyday objects and environments are equipped with sensing capabilities to advance the sustainability and quality of our lives—e.g. via smart homes, smart cities, smart healthcare, smart logistics, Industry 4.0, and precision agriculture. The realization of the full potential of these applications critically depends on the availability of easy-to-make, low-cost sensor technologies. Sensors based on printable electronic materials offer the ideal platform: they can be fabricated through simple methods (e.g. printing and coating) and are compatible with high-throughput roll-to-roll processing. Moreover, printable electronic materials often allow the fabrication of sensors on flexible/stretchable/biodegradable substrates, thereby enabling the deployment of sensors in unconventional settings. Fulfilling the promise of printable electronic materials for sensing will require materials and device innovations to enhance their ability to transduce external stimuli—light, ionizing radiation, pressure, strain, force, temperature, gas, vapours, humidity, and other chemical and biological analytes. This Roadmap brings together the viewpoints of experts in various printable sensing materials—and devices thereof—to provide insights into the status and outlook of the field. Alongside recent materials and device innovations, the roadmap discusses the key outstanding challenges pertaining to each printable sensing technology. Finally, the Roadmap points to promising directions to overcome these challenges and thus enable ubiquitous sensing for a sustainable, ‘intelligent’ world.more » « lessFree, publicly-accessible full text available August 9, 2025
-
Abstract Low‐cost biosensors that can rapidly and widely monitor plant nutritional levels will be critical for better understanding plant health and improving precision agriculture decision making. In this work, fully printed ion‐selective organic electrochemical transistors (OECTs) that can detect macronutrient concentrations in whole plant sap are described. Potassium, the most concentrated cation in the majority of plants, is selected as the target analyte as it plays a critical role in plant growth and development. The ion sensors demonstrate high current (170 µA dec−1) and voltage (99 mV dec−1) sensitivity, and a low limit of detection (10 × 10−6 m). These OECT biosensors can be used to determine potassium concentration in raw sap and sap‐like aqueous environments demonstrating a log‐linear response within the expected physiological range of cations in plants. The performance of these printed devices enables their use in high‐throughput plant health monitoring in agricultural and ecological applications.more » « less