skip to main content

Search for: All records

Creators/Authors contains: "Whittingslow, Daniel C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we quantify the joint acoustic emissions (JAEs) from the knees of children with juvenile idiopathic arthritis (JIA) and support their use as a novel biomarker of the disease. JIA is the most common rheumatic disease of childhood; it has a highly variable presentation, and few reliable biomarkers which makes diagnosis and personalization of care difficult. The knee is the most commonly affected joint with hallmark synovitis and inflammation that can extend to damage the underlying cartilage and bone. During movement of the knee, internal friction creates JAEs that can be non-invasively measured. We hypothesize that these JAEs contain clinically relevant information that could be used for the diagnosis and personalization of treatment of JIA. In this study, we record and compare the JAEs from 25 patients with JIA−10 of whom were recorded a second time 3–6 months later—and 18 healthy age- and sex-matched controls. We compute signal features from each of those record cycles of flexion/extension and train a logistic regression classification model. The model classified each cycle as having JIA or being healthy with 84.4% accuracy using leave-one-subject-out cross validation (LOSO-CV). When assessing the full JAE recording of a subject (which contained at least 8 cyclesmore »of flexion/extension), a majority vote of the cycle labels accurately classified the subjects as having JIA or being healthy 100% of the time. Using the output probabilities of a JIA class as a basis for a joint health score and test it on the follow-up patient recordings. In all 10 of our 6-week follow-up recordings, the score accurately tracked with successful treatment of the condition. Our proposed JAE-based classification model of JIA presents a compelling case for incorporating this novel joint health assessment technique into the clinical work-up and monitoring of JIA.« less
  2. Joint acoustic emission (JAE) sensing has recently proven to be a viable technique for non-invasive quantification indicating knee joint health. In this work, we adapt the acoustic emission sensing method to measure the JAEs of the wrist—another joint commonly affected by injury and degenerative disease. JAEs of seven healthy volunteers were recorded during wrist flexion-extension and rotation with sensitive uniaxial accelerometers placed at eight locations around the wrist. The acoustic data were bandpass filtered (150 Hz–20 kHz). The signal-to-noise ratio (SNR) was used to quantify the strength of the JAE signals in each recording. Then, nine audio features were extracted, and the intraclass correlation coefficient (ICC) (model 3,k), coefficients of variability (CVs), and Jensen–Shannon (JS) divergence were calculated to evaluate the interrater repeatability of the signals. We found that SNR ranged from 4.1 to 9.8 dB, intrasession and intersession ICC values ranged from 0.629 to 0.886, CVs ranged from 0.099 to 0.241, and JS divergence ranged from 0.18 to 0.20, demonstrating high JAE repeatability and signal strength at three locations. The volunteer sample size is not large enough to represent JAE analysis of a larger population, but this work will lay a foundation for future work in using wrist JAEsmore »to aid in diagnosis and treatment tracking of musculoskeletal pathologies and injury in wearable systems.« less
  3. Sounds produced by the articulation of joints have been shown to contain information characteristic of underlying joint health, morphology, and loading. In this work, we explore the use of a novel form factor for non-invasively acquiring acoustic/vibrational signals from the knee joint: an instrumented glove with a fingertip-mounted accelerometer. We validated the glove-based approach by comparing it to conventional mounting techniques (tape and foam microphone pads) in an experimental framework previously shown to reliably alter healthy knee joint sounds (vertical leg press). Measurements from healthy subjects (N = 11) in this proof-of-concept study demonstrated a highly consistent, monotonic, and significant (p < 0.01) increase in low-frequency signal root-mean-squared (RMS) amplitude—a straightforward metric relating to joint grinding loudness—with increasing vertical load across all three techniques. This finding suggests that a glove-based approach is a suitable alternative for collecting joint sounds that eliminates the need for consumables like tape and the interface noise associated with them.