skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wickland, K. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While a stimulating effect of plant primary productivity on soil carbon dioxide (CO2) emissions has been well documented, links between gross primary productivity (GPP) and wetland methane (CH4) emissions are less well investigated. Determination of the influence of primary productivity on wetland CH4emissions (FCH4) is complicated by confounding influences of water table level and temperature on CH4production, which also vary seasonally. Here, we evaluate the link between preceding GPP and subsequent FCH4at two fens in Wisconsin using eddy covariance flux towers, Lost Creek (US‐Los) and Allequash Creek (US‐ALQ). Both wetlands are mosaics of forested and shrub wetlands, with US‐Los being larger in scale and having a more open canopy. Co‐located sites with multi‐year observations of flux, hydrology, and meteorology provide an opportunity to measure and compare lag effects on FCH4without interference due to differing climate. Daily average FCH4from US‐Los reached a maximum of 47.7 ηmol CH4m−2 s−1during the study period, while US‐ALQ was more than double at 117.9 ηmol CH4 m−2 s−1. The lagged influence of GPP on temperature‐normalized FCH4(Tair‐FCH4) was weaker and more delayed in a year with anomalously high precipitation than a following drier year at both sites. FCH4at US‐ALQ was lower coincident with higher stream discharge in the wet year (2019), potentially due to soil gas flushing during high precipitation events and lower water temperatures. Better understanding of the lagged influence of GPP on FCH4due to this study has implications for climate modeling and more accurate carbon budgeting. 
    more » « less