skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Widdowson, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The strategy of Expedition 391 was to core at six distributed locations on the Tristan-Gough-Walvis (TGW) hotspot track, providing new insights into the temporal, volcanologic, petrologic, geochemical and paleomagnetic evolution of the hotspot track (see Scientific objectives in the Expedition 391 summary chapter [Sager et al., 2023c]). At the youngest and westernmost of these locations, three sites were proposed as a transect across the northern Guyot Province seamounts and ridges immediately southwest of the morphologic split that occurs at about 2°E (Figure F1). Because of severe cuts to operational time on that expedition caused by COVID-19 mitigation, two proposed sites (GT-4A and TT-4A) were omitted (see Introduction in the Expedition 391 summary chapter [Sager et al., 2023c]). Only the middle site (U1578) was cored (Figures F1, F2). This omission was a major deficiency for Expedition 391, because the three holes were positioned to sample the isotopic split that first occurs farther northeast, at the location of the DSDP Leg 74 transect (Hoernle et al., 2015). By omitting the ends of the transect, only dredge samples are available to characterize the isotopic end-members, which correspond to the Tristan track (northern seamounts that connect Walvis Ridge with the Tristan Island group) and the Gough track (southern seamounts that connect Walvis Ridge to the Gough Island group). 
    more » « less
  2. The strategy of Expedition 391 was to core at six distributed locations on the Tristan-Gough-Walvis (TGW) hotspot track, providing new insights into its temporal, volcanological, petrologic, geochemical, and paleomagnetic evolution (Sager et al., 2023b). At the youngest and westernmost of these locations, three sites were proposed as a transect across the northern Guyot Province seamounts and ridges immediately southwest of the morphological split that occurs at about 2°E (Figure F1). Because of severe cuts to operational time during Expedition 391 caused by COVID-19 mitigation, two sites (proposed Sites GT-4A and TT-4A) were omitted (Sager et al., 2023b). Only the middle site (U1578) was cored (Figure F1). This omission was a major deficiency for Expedition 391 because the three sites were positioned to sample the isotopic split that first occurs farther northeast at the location of the Deep Sea Drilling Project (DSDP) Leg 74 transect (Hoernle et al., 2015). By omitting the ends of the transect, only dredge samples are available to characterize the isotopic end-members, which correspond to the Tristan track (northern seamounts) and the Gough track (southern seamounts). 
    more » « less
  3. International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the southeast side of the hotspot track, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the northwest side. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanological study. Scientifically, one emphasis was to better understand the split in isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages at the same sites. The paleomagnetic study seeks to establish paleolatitudes for Walvis Ridge sites for comparison with those published from hotspot seamount chains in the Pacific, in particular to test whether a component of true polar wander affects hotspot paleolatitude. Hole U1584A cored a 66.4 m thick sedimentary and volcaniclastic section with two lithostratigraphic units. Unit I is a 23 m thick sequence of bioturbated clay and nannofossil chalk with increasing volcaniclastic content downhole. Unit II is a >43 m thick sequence of lapillistone with basalt fragments. Because the seismic section crossing the site shows no evidence as to the depth of the volcaniclastic cover, coring was terminated early. Because there were no other shallow sites nearby with different characteristics on existing seismic lines, the unused operations time from Site U1584 was shifted to the next site. The seismic reflector interpreted as the top of igneous rock at Site U1585 once again resulted from volcaniclastic deposits. Hole U1585A coring began at 144.1 mbsf and penetrated a 273.5 m thick sedimentary and volcaniclastic section atop a 81.2 m thick series of massive basalt flows. The hole was terminated at 498.8 mbsf because allotted operational time expired. The sedimentary section contains four main lithostratigraphic units. Unit I (144.1–157.02 mbsf) is a bioturbated nannofossil chalk with foraminifera, similar to the shallowest sediments recovered at Site U1584. Unit II (157.02–249.20 mbsf), which is divided into two subunits, is a 92.2 m thick succession of massive and bedded pumice and scoria lapillistone with increased reworking, clast alteration, and tuffaceous chalk intercalations downhole. Unit III (249.20–397.76 mbsf) is 148.6 m thick and consists of a complex succession of pink to greenish gray tuffaceous chalk containing multiple thin, graded ash turbidites and tuffaceous ash layers; intercalated tuffaceous chalk slumps; and several thick coarse lapilli and block-dominated volcaniclastic layers. Befitting its complexity, this unit is divided into eight subunits (IIIA–IIIH). Three of these subunits (IIIA, IIID, and IIIG) are mainly basalt breccias. Unit IV (397.76–417.60 mbsf) is a volcanic breccia, 19.8 m thick, containing mostly juvenile volcaniclasts. The igneous section, Unit V (417.60–498.80 mbsf) is composed of a small number of massive basaltic lava flows. It is divided into three igneous lithologic units, with Unit 2 represented by a single 3 cm piece of quenched basalt with olivine phenocrysts in a microcrystalline groundmass. This piece may represent a poorly recovered set of pillow lavas. Unit 1 is sparsely to highly olivine-clinopyroxene ± plagioclase phyric massive basalt and is divided into Subunits 1a and 1b based on textural and mineralogical differences, which suggests that they are two different flows. Unit 3 also consists of two massive lava flows with no clear boundary features. Subunit 3a is a 10.3 m thick highly clinopyroxene-plagioclase phyric massive basalt flow with a fine-grained groundmass. Subunit 3b is a featureless massive basalt flow that is moderately to highly clinopyroxene-olivine-plagioclase phyric and >43.7 m thick. Alteration of the lava flows is patchy and moderate to low in grade, with two stages, one at a higher temperature and one at a low temperature, both focused around fractures. The Site U1585 chronological succession from basalt flows to pelagic sediment indicates volcanic construction and subsidence. Lava eruptions were followed by inundation and shallow-water volcaniclastic sediment deposition, which deepened over time to deepwater conditions. Although the massive flows were probably erupted in a short time and have little variability, volcaniclasts in the sediments may provide geochemical and geochronologic data from a range of time and sources. Chemical analyses indicate that Site U1585 basalt samples are mostly alkalic basalt, with a few trachybasalt flow and clast samples and one basaltic trachyandesite clast. Ti/V values lie mostly within the oceanic island basalt (OIB) field but overlap the mid-ocean-ridge basalt (MORB) field. Only a handful of clasts from Site U1584 were analyzed, but geochemical data are similar. Paleomagnetic data from Site U1585 indicate that the sediments and basalt units are strongly magnetic and mostly give coherent inclination data, which indicates that the basaltic section and ~133 m of overlying volcaniclastic sediment is reversely polarized and that this reversal is preserved in a core. Above this, the rest of the sediment section records two normal and two reversed zones. Although there are not enough basalt flows to give a reliable paleolatitude, it may be possible to attain such a result from the sediments. 
    more » « less
  4. The Walvis Ridge system consists of a series of seamounts, ridges, and plateaus formed during the opening of the southern Atlantic Ocean since ~135 Ma. International Ocean Discovery Program Expeditions (IODP) 391 and 397T drilled six sites along the length of the hotspot track to understand the magmatic processes associated with evolving plume-ridge systems. The oldest drilled segment of the ridge system – Frio Ridge – extends from the Etendeka flood basalts in Namibia westward into the Atlantic Ocean. Site U1575 is on the Frio Ridge and is the closest site to the African continent. The site drilled 118.9 m of igneous basement with 70.7 m (59.5%) of recovery. The recovered core consisted of alternating sequences of submarine pillow lavas and sheet flows, some of which were massive (up to 21 m thick). Preliminary major and trace element data demonstrate the basaltic lavas are fractionated (MgO = 4.8-6.4 wt. %) with modest TiO2 contents (1.5-2.7 wt. %). The upper 52 m of igneous section (214-267 mbsf) are geochemically consistent throughout the various eruptive styles. However, an abrupt compositional shift to lavas with lower incompatible element abundances (TiO2, Zr, Sr, Nb, La, etc.) from 274-311 mbsf demonstrates a clear shift in magmatic source contributions. Below this, the lavas return to compositions similar to the upper portion of the hole. Shipboard natural gamma radiation (NGR) and magnetic susceptibility (MS) measurements correlate with mineralogical and compositional changes. Specifically, decreases in NGR correlate well with decreases in K2O, Sr, Y, and Zr. MS is positively correlated with zones containing olivine. Trace element discrimination plots demonstrate a dual character: Ti-V relationships are strongly MORB-like while Th/Nb suggests the lavas have both MORB and plume characteristics, consistent with the formation of the Frio Ridge through plume-ridge interaction. Elevated Zr/Nb and Y/Nb values are also consistent with a hybrid source. The composition of this core contrasts sharply with cores recovered from the younger Guyot Province to the southwest. Sites U1578 and U1585 have episodes of higher TiO2 contents (>3.5 wt. %) with trace element signatures (e.g. low Zr/Nb & Y/Nb) indicative of a pronounced plume component, consistent with an intraplate setting for the formation of the Guyot Province. 
    more » « less
  5. Walvis Ridge, a time-transgressive series of ridges, oceanic plateau, seamounts, guyots, and two active volcanic islands extending SW from the coast of Namibia, records the evolution of the Tristan-Gough-Walvis Ridge (TGW) hotspot and the opening of the South Atlantic since ~135 Ma. However, much of our current understanding of the interplay between geodynamic cycles, tectonism, and mantle plume generation along the TGW hotspot track is based upon a limited number of dredged rock samples. Here, we present preliminary whole rock major and trace element geochemistry and shipboard physical properties data from Site U1578, located on a Center track guyot in the Guyot Province. The 302 m of igneous section recovered from Site U1578 provides an extraordinary, > 1 Myr record of plume magmatism, submarine volcanism, and geochemical evolution. The chemical stratigraphy of core from Site U1578 provides important new perspectives on submarine volcanism, magma flux, and the transition between continental tholeiitic basalts of the Etendeka flood basalt province and alkaline lavas of the Guyot Province. Core from U1578 records the longest sequence of pillow, sheet, and massive lava flows in the TGW system. Eleven (of 12 total) lithologic flow units record shifts in major and trace element geochemistry and episodic cycles of recharge and fractional crystallization. Preliminary XRF and ICP-MS analyses indicate a dominantly pyroxenite source and document the shift between high TiO2 (>3.5 wt. %) to low TiO2 (<3.5 wt. %) alkaline basalts. Site U1578 core samples from the Guyot Province have lower Nb/Y and Zr/Nb compared to Walvis Ridge sites drilled closer to the African continent (Frio Ridge at Site U1575 and Valdivia Bank at Sites U1576 and U1577), coincident with a transition from plume-ridge interaction to intraplate magmatism with time. This shift resulted in a thicker lithospheric lid and thus deeper and lower degrees of melting, preferentially sampling the enriched plume component. Additionally, shipboard natural gamma radiation (NGR) and magnetic susceptibility (MS) measurements correlate well with observed lithologic characteristics and new ICP-MS and XRF analyses. A 100 m zone of high NGR values neatly overlaps high K2O, and olivine cumulate layers correlate to higher MS and higher concentrations of Cr and Ni. 
    more » « less
  6. Abstract

    The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.

     
    more » « less
  7. The strategy for International Ocean Discovery Program (IODP) Expedition 391 was to drill at three distributed locations on Walvis Ridge and one in the Guyot Province, providing an age transect along the Tristan-Gough-Walvis (TGW) hotspot track. Site U1578 (proposed Site CT-5A) is located on the deep northwestern flank of an unnamed guyot that is part of the Center track, a ridge between the Tristan and Gough seamount tracks, southwest of where Walvis Ridge splits (Figures F1, F2). 
    more » « less
  8. The strategy for International Ocean Discovery Program (IODP) Expedition 391 was to drill at three distributed locations on Walvis Ridge and one in Guyot Province, providing an age transect along the Tristan-Gough-Walvis (TGW) hotspot track. Site U1576 (proposed Site VB-14A), located on the western flank of Valdivia Bank (Figure F1), is one of two sites on this edifice selected to investigate the type of volcanism, possible plume-ridge interaction, the older extent of hotspot track geochemical zonation, and the age progression. Both hotspot models and the age progression of Homrighausen et al. (2019) predict an age of ~80–85 Ma (Figures F2, F3). A magnetic anomaly map indicates that Site U1576 is located on a prominent negative anomaly (Figure F4) that is thought to be Chron 33r (79.9–83.6 Ma; Ogg, 2020). 
    more » « less
  9. The strategy for International Ocean Discovery Program (IODP) Expedition 391 was to drill at three distributed locations on Walvis Ridge and one in Guyot Province, providing an age transect along the Tristan-Gough-Walvis (TGW) hotspot track. Site U1577 (proposed Site VB-13A) is located on the eastern flank of Valdivia Bank (Figure F1). The purpose of this site and Site U1576 (on the west side of Valdivia Bank) is to investigate the type of volcanism, possible plume-ridge interaction, geochemical heterogeneity, and the age progression of the hotspot track. Both hotspot models and the age progression of Homrighausen et al. (2019) predict an age of ~80–85 Ma (Figures F2, F3). A magnetic anomaly map indicates that Site U1577 is located on a prominent positive anomaly (Figure F4) that is thought to be the young end of Chron 34n (83.7 Ma; Ogg, 2020). 
    more » « less
  10. This chapter outlines the procedures and methods employed for coring and drilling operations as well as in the various shipboard laboratories of the R/V JOIDES Resolution during International Ocean Discovery Program (IODP) Expedition 391. The laboratory information applies only to shipboard work described in the Expedition Reports section of the Expedition 391 Proceedings of the International Ocean Discovery Program volume, using the shipboard sample registry, imaging and analytical instruments, core description tools, and the Laboratory Information Management System (LIMS) database. Methods used by investigators for shore-based analyses of Expedition 391 samples and data will be described in separate individual peer-reviewed scientific publications. 
    more » « less