Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt.
-
Abstract Marine fallout ash beds can provide continuous, time‐precise records of highly explosive arc volcanism that can be linked with the climate record. An evaluation of revised Plio‐Pleistocene (0–4 Myr) tephrostratigraphies from Ocean Drilling Program Sites 881, 882, and 884 confirms cyclicity of the Kamchatka‐Kurile arc volcanism and a marked increase just after the intensification of the Northern Hemisphere glaciation at 2.73 Ma. The compositional constancy of the Kamchatka‐Kurile volcano‐magma systems through time points to external modulation of volcanic cyclicity and frequency. The stacked tephra record reveals periodic peaks in arc volcanicity at ∼0.3, ∼1.0, ∼1.6, ∼2.5, and ∼3.8 Myr that coincide with maxima of the global ice volume variability that have been linked with the amplitude modulation of the precession (0.3, 1.0 Myr) and obliquity (1.6, 2.5 and 3.8 Myr) bands. A simple model of a decreasing obliquity variance across the mid‐Pleistocene Transition at constant precession variance produces an excellent correlation of ash bed cycles with the variability of global benthic δ18O (
r 2 = 0.75), which implies that climate, and not direct orbital forcing, modulates Kamchatka‐Kurile arc volcanism. The rising influence of precession variance in the Kamchatka‐Kurile ash bed record after the mid‐Pleistocene Transition contrasts with the dominant 100 kyr signal in the benthic δ18O global ice volume variability, which may either reflect limitations of the ash bed record or an regional rather than global influence of ice volume variability. Our results indicate that climate influences the Kamchatka‐Kurile arc volcanism, which may influence climate only by feedback. -
Abstract The processes and ranges of intensive variables that control magma transport and dyke propagation through the crust are poorly understood. Here we show that textural and compositional data of olivine crystals (Mg/Fe, Ni and P) from the tephra of the first months of Paricutin volcano monogenetic eruption (Mexico, 1943–1952) record fast growth and large temperature and oxygen fugacity gradients. We interpret that these gradients are due to convective magma transport in a propagating dyke to the Earth’s surface in less than a few days. The shortest time we have obtained is 0.1 day, and more than 50% of the calculated timescales are < 2 days for the earliest erupted tephra, which implies magma ascent rates of about 0.1 and 1 m s−1. The olivine zoning patterns change with the eruptive stratigraphy, and record a transition towards a more steady magma flow before the transition from explosive to effusive dynamics. Our results can inform numerical and experimental analogue models of dyke propagation, and thus facilitate a better understanding of the seismicity and other precursors of dyke-fed eruptions.