skip to main content

Search for: All records

Creators/Authors contains: "Wiebe, C. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field withmore »reduced ordered moment as 1.24 μ B /Co; (iii) a series of spin state transitions for both H ∥ ab -plane and H ∥ c -axis. For H ∥ ab -plane, the magnetization plateau feature related to the up–up–down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba 3 CoSb 2 O 9 , which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.« less
    Free, publicly-accessible full text available March 10, 2023
  2. Abstract The magnetic ground state of the pyrochlore Yb 2 GaSbO 7 has not been established. The persistent spin fluctuations observed by muon spin-relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb 2 GaSbO 7 to revisit the nature of the magnetic ground state. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb 2 GaSbO 7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. Thismore »state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field μ 0 H c  ~ 1.5 T.« less
    Free, publicly-accessible full text available December 1, 2022