Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Perovskite materials are promising contenders as the active layer in light‐harvesting and light‐emitting applications if their long‐term stability can be sufficiently increased. Chemical and structural engineering are shown to enhance long‐term stability, but the increased complexity of the material system also leads to inhomogeneous functional properties across various length scales. Thus, scanning probe and high‐resolution microscopy characterization techniques are needed to reveal the role of local defects and the results promise to act as the foundation for future device improvements. A look at the parameter space: technique‐specific sample penetration depth versus probe size highlights a gap in current methods. High spatial resolution combined with a deep penetration depth is not yet achievable. However, multimodal measurement technique may be the key to covering this parameter space. In this perspective, current advanced spectro‐microscopy methods which have been applied to perovskite materials are highlighted.more » « lessFree, publicly-accessible full text available November 6, 2025
-
Free, publicly-accessible full text available November 28, 2025
-
The widespread utilization of perovskite-based photovoltaics requires probing both the structural and optical properties under extreme operating conditions to gain a holistic understanding of the material behavior under stressors. Here, we investigate the temperature-dependent behavior of mixed A-site cation lead triiodide perovskite thin films (85% methylammonium and 15% formamidinium) in the range from 300 to 20 K. Through a combination of optical and structural techniques, we find that the tetragonal-to-orthorhombic phase transition occurs at ∼110 K for this perovskite composition, as indicated by the change in the diffraction pattern. With decreasing temperature, the quantum yield increases with a concurrent elongation of the carrier lifetimes, indicating suppression of nonradiative recombination pathways. Interestingly, in contrast to single A-site cation perovskites, an additional optical transition appears in the absorption spectrum when the phase transition is approached, which is also reflected in the emission spectrum. We propose that the splitting of the optical absorption and emission is due to local segregation of the mixed cation perovskite during the phase transition.more » « lessFree, publicly-accessible full text available October 8, 2025
-
Abstract Materials in crystalline form possess translational symmetry (TS) when the unit cell is repeated in real space with long‐ and short‐range orders. The periodic potential in the crystal regulates the electron wave function and results in unique band structures, which further define the physical properties of the materials. Amorphous materials lack TS due to the randomization of distances and arrangements between atoms, causing the electron wave function to lack a well‐defined momentum. High entropy materials provide another way to break the TS by randomizing the potential strength at periodic atomic sites. The local elemental distribution has a great impact on physical properties in high entropy materials. It is critical to distinguish elements at the sub‐nanometer scale to uncover the correlations between the elemental distribution and the material properties. Here, the use of synchrotron X‐ray scanning tunneling microscopy (SX‐STM) with sub‐nm scale resolution in identifying elements on a high entropy alloy (HEA) surface is demonstrated. By examining the elementally sensitive X‐ray absorption spectra with an STM tip to enhance the spatial resolution, the elemental distribution on an HEA's surface at a sub‐nm scale is extracted. These results open a pathway towards quantitatively understanding high entropy materials and their material properties.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract Triplet–triplet annihilation‐based photon upconversion (TTA‐UC) can efficiently generate higher energy photons at low relative fluences. Bulk metal halide perovskites have offered promise in efficiently sensitizing molecular triplet states in the solid state, necessary for the integration of TTA‐UC into device‐based applications. Recent work focused on TTA‐UC from a rubrene triplet annihilator sensitized by perovskite thin films has established relatively efficient charge extraction from the perovskite, forming the triplet exciton in rubrene. Yet, the specifics underpinning charge transfer at the perovskite/rubrene interface are not fully elucidated. To improve device performance and study the properties governing charge transfer at the interface, various organic solvents are explored to treat the perovskite surface. Scanning tunneling microscopy and spectroscopy show a difference in the electronic band structure, where both n‐ and p‐type terminated perovskite surfaces are observed depending on the solvent used. Supported by optical spectroscopy, the impact of the perovskite electronic structure is monitored, indicating that n‐type perovskite sensitizers feature higher TTA‐UC efficiencies due to favorable band bending resulting in efficient hole‐mediated triplet formation. Overall, the tuning of the electronic structure of the perovskite sensitizer through solvent treatment is shown to be a key force in tuning the mechanism of efficient triplet generation.more » « less