skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wikelski, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Partial migration is a phenomenon where migratory and resident individuals of the same species co‐exist within a population, and has been linked to both intrinsic (e.g., genetic) as well as environmental factors. Here we investigated the genomic architecture of partial migration in the common blackbird, a songbird that comprises resident populations in the southern distribution range, partial migratory populations in central Europe, and exclusively migratory populations in northern and eastern Europe. We generated whole‐genome sequencing data for 60 individuals, each of which was phenotyped for migratory behavior using radio‐telemetry tracking. These individuals were sampled across the species' distribution range, including resident populations (Spain and France), obligate migrants (Russia), and a partial migratory population with equal numbers of migratory and resident individuals in Germany. We estimated genetic differentiation (FST) of single‐nucleotide variants (SNVs) in 2.5 kb windows between all possible population and migratory phenotype combinations, and focused our characterization on birds from the partial migratory population in Germany. Despite overall low differentiation within the partial migratory German population, we identified several outlier regions with elevated differentiation on four distinct chromosomes. The region with the highest relative and absolute differentiation was located on chromosome 9, overlappingPER2, which has previously been shown to be involved in the control of the circadian rhythm across vertebrates. While this region showed high levels of differentiation, no fixed variant could be identified, supporting the notion that a complex phenotype such as migratory behavior is likely controlled by a large number of genetic loci. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Over the past five decades, a large number of wild animals have been individually identified by various observation systems and/or temporary tracking methods, providing unparalleled insights into their lives over both time and space. However, so far there is no comprehensive record of uniquely individually identified animals nor where their data and metadata are stored, for example photos, physiological and genetic samples, disease screens, information on social relationships.Databases currently do not offer unique identifiers for living, individual wild animals, similar to the permanent ID labelling for deceased museum specimens.To address this problem, we introduce two new concepts: (1) a globally unique animal ID (UAID) available to define uniquely and individually identified animals archived in any database, including metadata archived at the time of publication; and (2) the digital ‘home’ for UAIDs, the Movebank Life History Museum (MoMu), storing and linking metadata, media, communications and other files associated with animals individually identified in the wild. MoMu will ensure that metadata are available for future generations, allowing permanent linkages to information in other databases.MoMu allows researchers to collect and store photos, behavioural records, genome data and/or resightings of UAIDed animals, encompassing information not easily included in structured datasets supported by existing databases. Metadata is uploaded through the Animal Tracker app, the MoMu website, by email from registered users or through an Application Programming Interface (API) from any database. Initially, records can be stored in a temporary folder similar to a field drawer, as naturalists routinely do. Later, researchers and specialists can curate these materials for individual animals, manage the secure sharing of sensitive information and, where appropriate, publish individual life histories with DOIs. The storage of such synthesized lifetime stories of wild animals under a UAID (unique identifier or ‘animal passport’) will support basic science, conservation efforts and public participation. 
    more » « less
  3. Abstract Amidst numerous global crises, decision‐makers have recognized the critical need for fact‐based advice, driving unprecedented data collection. However, a significant gap persists between data availability and knowledge generation, primarily due to time and resource constraints. To bridge this gap, we propose involving a novel group of citizen scientists: volunteer code developers.Utilizing the modular, open‐source analysis platform MoveApps, we were able to engage 12 volunteer coders in a challenge to create tools for movement ecology, aimed at animal conservation. These volunteers developed functioning applications capable of analysing animal tracking data to identify stationary behaviour, estimate ranges and movement corridors and assess human–wildlife conflicts using data sets from human infrastructure, such as OpenStreetMap.Engaging citizen scientists in developing code has surfaced three primary challenges: (i) Community Building—attracting the right participants; (ii) Community Involvement—maintaining quality standards and directing tasks effectively; and (iii) Community Retention—ensuring long‐term engagement. We explore strategies to overcome these challenges and share lessons learnt from our coding challenge experience. Our approaches include engaging the community through their own preferred channels, providing an accessible open‐source tool, defining specific use cases in detail, ensuring quality through feedback, fostering self‐organized community exchanges and prominently illustrating the impact of contributions.We also advocate for other disciplines to consider leveraging volunteer involvement, alongside artificial intelligence, for data analysis and generating state‐of‐the‐art, fact‐based insight to address critical issues such as the global decline in biodiversity. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract Background Bio-logging and animal tracking datasets continuously grow in volume and complexity, documenting animal behaviour and ecology in unprecedented extent and detail, but greatly increasing the challenge of extracting knowledge from the data obtained. A large variety of analysis methods are being developed, many of which in effect are inaccessible to potential users, because they remain unpublished, depend on proprietary software or require significant coding skills. Results We developed MoveApps, an open analysis platform for animal tracking data, to make sophisticated analytical tools accessible to a global community of movement ecologists and wildlife managers. As part of the Movebank ecosystem, MoveApps allows users to design and share workflows composed of analysis modules (Apps) that access and analyse tracking data. Users browse Apps, build workflows, customise parameters, execute analyses and access results through an intuitive web-based interface. Apps, coded in R or other programming languages, have been developed by the MoveApps team and can be contributed by anyone developing analysis code. They become available to all user of the platform. To allow long-term and cross-system reproducibility, Apps have public source code and are compiled and run in Docker containers that form the basis of a serverless cloud computing system. To support reproducible science and help contributors document and benefit from their efforts, workflows of Apps can be shared, published and archived with DOIs in the Movebank Data Repository. The platform was beta launched in spring 2021 and currently contains 49 Apps that are used by 316 registered users. We illustrate its use through two workflows that (1) provide a daily report on active tag deployments and (2) segment and map migratory movements. Conclusions The MoveApps platform is meant to empower the community to supply, exchange and use analysis code in an intuitive environment that allows fast and traceable results and feedback. By bringing together analytical experts developing movement analysis methods and code with those in need of tools to explore, answer questions and inform decisions based on data they collect, we intend to increase the pace of knowledge generation and integration to match the huge growth rate in bio-logging data acquisition. 
    more » « less
  5. Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus–bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus–host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human–bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata. 
    more » « less
  6. Abstract Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation. 
    more » « less
  7. Abstract Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence. 
    more » « less