- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Wilber, Heather (2)
-
Barnett, Alex H (1)
-
Epperly, Ethan N (1)
-
Quinn, Katherine N. (1)
-
Sethna, James P. (1)
-
Townsend, Alex (1)
-
Trefethen, Lloyd N (1)
-
Wilber, Heather D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An algorithm is presented to compute Zolotarev rational functions, that is, rational functions of a given degree that are as small as possible on one set E relative to their size on another set F (the third Zolotarev problem). Along the way we also approximate the sign function relative to E and F (the fourth Zolotarev problem).more » « lessFree, publicly-accessible full text available August 31, 2026
-
Wilber, Heather; Epperly, Ethan N; Barnett, Alex H (, SIAM Journal on Scientific Computing)A direct solver is introduced for solving overdetermined linear systems involving nonuniform discrete Fourier transform matrices. Such matrices can be transformed into a Cauchy-like form that has hierarchical low rank structure. The rank structure of this matrix is explained, and it is shown that the ranks of the relevant submatrices grow only logarithmically with the number of columns of the matrix. A fast rank-structured hierarchical approximation method based on this analysis is developed, along with a hierarchical least-squares solver for these and related systems. This result is a direct method for inverting nonuniform discrete transforms with a complexity that is usually nearly linear with respect to the degrees of freedom in the problem. This solver is benchmarked against various iterative and direct solvers in the setting of inverting the one-dimensional type-II (or forward) transform, for a range of condition numbers and problem sizes (up to 4 × 10 by 2 × 10 ). These experiments demonstrate that this method is especially useful for large problems with multiple right-hand sides.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Quinn, Katherine N.; Wilber, Heather; Townsend, Alex; Sethna, James P. (, Physical Review Letters)
An official website of the United States government
